| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348 |
- # coding=utf-8
- # Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team.
- # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Tokenization classes for PhoBERT"""
- import os
- import re
- from shutil import copyfile
- from typing import List, Optional, Tuple
- from ...tokenization_utils import PreTrainedTokenizer
- from ...utils import logging
- logger = logging.get_logger(__name__)
- VOCAB_FILES_NAMES = {
- "vocab_file": "vocab.txt",
- "merges_file": "bpe.codes",
- }
- def get_pairs(word):
- """
- Return set of symbol pairs in a word.
- Word is represented as tuple of symbols (symbols being variable-length strings).
- """
- pairs = set()
- prev_char = word[0]
- for char in word[1:]:
- pairs.add((prev_char, char))
- prev_char = char
- pairs = set(pairs)
- return pairs
- class PhobertTokenizer(PreTrainedTokenizer):
- """
- Construct a PhoBERT tokenizer. Based on Byte-Pair-Encoding.
- This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
- this superclass for more information regarding those methods.
- Args:
- vocab_file (`str`):
- Path to the vocabulary file.
- merges_file (`str`):
- Path to the merges file.
- bos_token (`st`, *optional*, defaults to `"<s>"`):
- The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
- <Tip>
- When building a sequence using special tokens, this is not the token that is used for the beginning of
- sequence. The token used is the `cls_token`.
- </Tip>
- eos_token (`str`, *optional*, defaults to `"</s>"`):
- The end of sequence token.
- <Tip>
- When building a sequence using special tokens, this is not the token that is used for the end of sequence.
- The token used is the `sep_token`.
- </Tip>
- sep_token (`str`, *optional*, defaults to `"</s>"`):
- The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
- sequence classification or for a text and a question for question answering. It is also used as the last
- token of a sequence built with special tokens.
- cls_token (`str`, *optional*, defaults to `"<s>"`):
- The classifier token which is used when doing sequence classification (classification of the whole sequence
- instead of per-token classification). It is the first token of the sequence when built with special tokens.
- unk_token (`str`, *optional*, defaults to `"<unk>"`):
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
- token instead.
- pad_token (`str`, *optional*, defaults to `"<pad>"`):
- The token used for padding, for example when batching sequences of different lengths.
- mask_token (`str`, *optional*, defaults to `"<mask>"`):
- The token used for masking values. This is the token used when training this model with masked language
- modeling. This is the token which the model will try to predict.
- """
- vocab_files_names = VOCAB_FILES_NAMES
- def __init__(
- self,
- vocab_file,
- merges_file,
- bos_token="<s>",
- eos_token="</s>",
- sep_token="</s>",
- cls_token="<s>",
- unk_token="<unk>",
- pad_token="<pad>",
- mask_token="<mask>",
- **kwargs,
- ):
- self.vocab_file = vocab_file
- self.merges_file = merges_file
- self.encoder = {}
- self.encoder[str(bos_token)] = 0
- self.encoder[str(pad_token)] = 1
- self.encoder[str(eos_token)] = 2
- self.encoder[str(unk_token)] = 3
- self.add_from_file(vocab_file)
- self.decoder = {v: k for k, v in self.encoder.items()}
- with open(merges_file, encoding="utf-8") as merges_handle:
- merges = merges_handle.read().split("\n")[:-1]
- merges = [tuple(merge.split()[:-1]) for merge in merges]
- self.bpe_ranks = dict(zip(merges, range(len(merges))))
- self.cache = {}
- super().__init__(
- bos_token=bos_token,
- eos_token=eos_token,
- unk_token=unk_token,
- sep_token=sep_token,
- cls_token=cls_token,
- pad_token=pad_token,
- mask_token=mask_token,
- **kwargs,
- )
- def build_inputs_with_special_tokens(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
- adding special tokens. A PhoBERT sequence has the following format:
- - single sequence: `<s> X </s>`
- - pair of sequences: `<s> A </s></s> B </s>`
- Args:
- token_ids_0 (`List[int]`):
- List of IDs to which the special tokens will be added.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
- """
- if token_ids_1 is None:
- return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
- cls = [self.cls_token_id]
- sep = [self.sep_token_id]
- return cls + token_ids_0 + sep + sep + token_ids_1 + sep
- def get_special_tokens_mask(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
- ) -> List[int]:
- """
- Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
- special tokens using the tokenizer `prepare_for_model` method.
- Args:
- token_ids_0 (`List[int]`):
- List of IDs.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- already_has_special_tokens (`bool`, *optional*, defaults to `False`):
- Whether or not the token list is already formatted with special tokens for the model.
- Returns:
- `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
- """
- if already_has_special_tokens:
- return super().get_special_tokens_mask(
- token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
- )
- if token_ids_1 is None:
- return [1] + ([0] * len(token_ids_0)) + [1]
- return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
- def create_token_type_ids_from_sequences(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Create a mask from the two sequences passed to be used in a sequence-pair classification task. PhoBERT does not
- make use of token type ids, therefore a list of zeros is returned.
- Args:
- token_ids_0 (`List[int]`):
- List of IDs.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of zeros.
- """
- sep = [self.sep_token_id]
- cls = [self.cls_token_id]
- if token_ids_1 is None:
- return len(cls + token_ids_0 + sep) * [0]
- return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
- @property
- def vocab_size(self):
- return len(self.encoder)
- def get_vocab(self):
- return dict(self.encoder, **self.added_tokens_encoder)
- def bpe(self, token):
- if token in self.cache:
- return self.cache[token]
- word = tuple(token)
- word = tuple(list(word[:-1]) + [word[-1] + "</w>"])
- pairs = get_pairs(word)
- if not pairs:
- return token
- while True:
- bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
- if bigram not in self.bpe_ranks:
- break
- first, second = bigram
- new_word = []
- i = 0
- while i < len(word):
- try:
- j = word.index(first, i)
- except ValueError:
- new_word.extend(word[i:])
- break
- else:
- new_word.extend(word[i:j])
- i = j
- if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
- new_word.append(first + second)
- i += 2
- else:
- new_word.append(word[i])
- i += 1
- new_word = tuple(new_word)
- word = new_word
- if len(word) == 1:
- break
- else:
- pairs = get_pairs(word)
- word = "@@ ".join(word)
- word = word[:-4]
- self.cache[token] = word
- return word
- def _tokenize(self, text):
- """Tokenize a string."""
- split_tokens = []
- words = re.findall(r"\S+\n?", text)
- for token in words:
- split_tokens.extend(list(self.bpe(token).split(" ")))
- return split_tokens
- def _convert_token_to_id(self, token):
- """Converts a token (str) in an id using the vocab."""
- return self.encoder.get(token, self.encoder.get(self.unk_token))
- def _convert_id_to_token(self, index):
- """Converts an index (integer) in a token (str) using the vocab."""
- return self.decoder.get(index, self.unk_token)
- def convert_tokens_to_string(self, tokens):
- """Converts a sequence of tokens (string) in a single string."""
- out_string = " ".join(tokens).replace("@@ ", "").strip()
- return out_string
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
- if not os.path.isdir(save_directory):
- logger.error(f"Vocabulary path ({save_directory}) should be a directory")
- return
- out_vocab_file = os.path.join(
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
- )
- out_merge_file = os.path.join(
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
- )
- if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
- copyfile(self.vocab_file, out_vocab_file)
- elif not os.path.isfile(self.vocab_file):
- with open(out_vocab_file, "wb") as fi:
- content_spiece_model = self.sp_model.serialized_model_proto()
- fi.write(content_spiece_model)
- if os.path.abspath(self.merges_file) != os.path.abspath(out_merge_file):
- copyfile(self.merges_file, out_merge_file)
- return out_vocab_file, out_merge_file
- # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
- # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
- # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
- # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
- # return ''.join(tokens_generated_so_far)
- def add_from_file(self, f):
- """
- Loads a pre-existing dictionary from a text file and adds its symbols to this instance.
- """
- if isinstance(f, str):
- try:
- with open(f, "r", encoding="utf-8") as fd:
- self.add_from_file(fd)
- except FileNotFoundError as fnfe:
- raise fnfe
- except UnicodeError:
- raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset")
- return
- lines = f.readlines()
- for lineTmp in lines:
- line = lineTmp.strip()
- idx = line.rfind(" ")
- if idx == -1:
- raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'")
- word = line[:idx]
- self.encoder[word] = len(self.encoder)
|