| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384 |
- # coding=utf-8
- # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Pix2Struct model configuration"""
- import os
- from typing import Union
- from ...configuration_utils import PretrainedConfig
- from ...utils import logging
- logger = logging.get_logger(__name__)
- class Pix2StructTextConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`Pix2StructTextModel`]. It is used to instantiate
- a Pix2Struct text model according to the specified arguments, defining the model architecture. Instantiating a
- configuration with the defaults will yield a similar configuration to that of the Pix2Struct text decoder used by
- the [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- vocab_size (`int`, *optional*, defaults to 50244):
- Vocabulary size of the `Pix2Struct` text model. Defines the number of different tokens that can be
- represented by the `inputs_ids` passed when calling [`Pix2StructTextModel`].
- hidden_size (`int`, *optional*, defaults to 768):
- Dimensionality of the encoder layers and the pooler layer.
- d_kv (`int`, *optional*, defaults to 64):
- Dimensionality of the key, query, value projections in each attention head.
- d_ff (`int`, *optional*, defaults to 2048):
- Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
- num_layers (`int`, *optional*, defaults to 12):
- Number of hidden layers in the Transformer encoder.
- num_heads (`int`, *optional*, defaults to 12):
- Number of attention heads for each attention layer in the Transformer encoder.
- relative_attention_num_buckets (`int`, *optional*, defaults to 32):
- The number of buckets to use for each attention layer.
- relative_attention_max_distance (`int`, *optional*, defaults to 128):
- The maximum distance of the longer sequences for the bucket separation.
- dropout_rate (`float`, *optional*, defaults to 0.1):
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
- layer_norm_epsilon (`float`, *optional*, defaults to 1e-6):
- The epsilon used by the layer normalization layers.
- initializer_factor (`float`, *optional*, defaults to 1.0):
- A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
- testing).
- dense_act_fn (`Union[Callable, str]`, *optional*, defaults to `"gelu_new"`):
- The non-linear activation function (function or string).
- decoder_start_token_id (`int`, *optional*, defaults to 0):
- The id of the `decoder_start_token_id` token.
- use_cache (`bool`, *optional*, defaults to `False`):
- Whether or not the model should return the last key/values attentions (not used by all models).
- pad_token_id (`int`, *optional*, defaults to 0):
- The id of the `padding` token.
- eos_token_id (`int`, *optional*, defaults to 1):
- The id of the `end-of-sequence` token.
- Example:
- ```python
- >>> from transformers import Pix2StructTextConfig, Pix2StructTextModel
- >>> # Initializing a Pix2StructTextConfig with google/pix2struct-base style configuration
- >>> configuration = Pix2StructTextConfig()
- >>> # Initializing a Pix2StructTextModel (with random weights) from the google/pix2struct-base style configuration
- >>> model = Pix2StructTextModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "pix2struct_text_model"
- keys_to_ignore_at_inference = ["past_key_values"]
- attribute_map = {
- "hidden_size": "hidden_size",
- "num_attention_heads": "num_heads",
- "num_hidden_layers": "num_layers",
- }
- def __init__(
- self,
- vocab_size=50244,
- hidden_size=768,
- d_kv=64,
- d_ff=2048,
- num_layers=12,
- num_heads=12,
- relative_attention_num_buckets=32,
- relative_attention_max_distance=128,
- dropout_rate=0.1,
- layer_norm_epsilon=1e-6,
- initializer_factor=1.0,
- dense_act_fn="gelu_new",
- decoder_start_token_id=0,
- use_cache=False,
- pad_token_id=0,
- eos_token_id=1,
- tie_word_embeddings=False,
- is_decoder=True,
- **kwargs,
- ):
- self.vocab_size = vocab_size
- self.hidden_size = hidden_size
- self.d_kv = d_kv
- self.d_ff = d_ff
- self.num_layers = num_layers
- self.num_heads = num_heads
- self.relative_attention_num_buckets = relative_attention_num_buckets
- self.relative_attention_max_distance = relative_attention_max_distance
- self.dropout_rate = dropout_rate
- self.layer_norm_epsilon = layer_norm_epsilon
- self.initializer_factor = initializer_factor
- self.use_cache = use_cache
- self.eos_token_id = eos_token_id
- self.decoder_start_token_id = decoder_start_token_id
- # for backwards compatibility
- self.dense_act_fn = dense_act_fn
- super().__init__(
- pad_token_id=pad_token_id,
- eos_token_id=eos_token_id,
- decoder_start_token_id=decoder_start_token_id,
- tie_word_embeddings=tie_word_embeddings,
- is_decoder=is_decoder,
- **kwargs,
- )
- @classmethod
- def from_pretrained(
- cls, pretrainehidden_size_name_or_path: Union[str, os.PathLike], **kwargs
- ) -> "PretrainedConfig":
- cls._set_token_in_kwargs(kwargs)
- config_dict, kwargs = cls.get_config_dict(pretrainehidden_size_name_or_path, **kwargs)
- # get the text config dict if we are loading from Pix2StructConfig
- if config_dict.get("model_type") == "pix2struct":
- config_dict = config_dict["text_config"]
- if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
- logger.warning(
- f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
- f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
- )
- return cls.from_dict(config_dict, **kwargs)
- class Pix2StructVisionConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`Pix2StructVisionModel`]. It is used to
- instantiate a Pix2Struct vision model according to the specified arguments, defining the model architecture.
- Instantiating a configuration defaults will yield a similar configuration to that of the Pix2Struct-base
- [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- hidden_size (`int`, *optional*, defaults to 768):
- Dimensionality of the encoder layers and the pooler layer.
- patch_embed_hidden_size (`int`, *optional*, defaults to 768):
- Dimensionality of the input patch_embedding layer in the Transformer encoder.
- d_ff (`int`, *optional*, defaults to 2048):
- Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
- d_kv (`int`, *optional*, defaults to 64):
- Dimensionality of the key, query, value projections per attention head.
- num_hidden_layers (`int`, *optional*, defaults to 12):
- Number of hidden layers in the Transformer encoder.
- num_attention_heads (`int`, *optional*, defaults to 12):
- Number of attention heads for each attention layer in the Transformer encoder.
- dense_act_fn (`str` or `function`, *optional*, defaults to `"gelu_new"`):
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
- `"relu"`, `"selu"` and `"gelu_new"` `"gelu"` are supported.
- layer_norm_eps (`float`, *optional*, defaults to 1e-06):
- The epsilon used by the layer normalization layers.
- dropout_rate (`float`, *optional*, defaults to 0.0):
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
- attention_dropout (`float`, *optional*, defaults to 0.0):
- The dropout ratio for the attention probabilities.
- initializer_range (`float`, *optional*, defaults to 1e-10):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- initializer_factor (`float`, *optional*, defaults to 1.0):
- A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
- testing).
- seq_len (`int`, *optional*, defaults to 4096):
- Maximum sequence length (here number of patches) supported by the model.
- relative_attention_num_buckets (`int`, *optional*, defaults to 32):
- The number of buckets to use for each attention layer.
- relative_attention_max_distance (`int`, *optional*, defaults to 128):
- The maximum distance (in tokens) to use for each attention layer.
- Example:
- ```python
- >>> from transformers import Pix2StructVisionConfig, Pix2StructVisionModel
- >>> # Initializing a Pix2StructVisionConfig with google/pix2struct-base style configuration
- >>> configuration = Pix2StructVisionConfig()
- >>> # Initializing a Pix2StructVisionModel (with random weights) from the google/pix2struct-base style configuration
- >>> model = Pix2StructVisionModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "pix2struct_vision_model"
- def __init__(
- self,
- hidden_size=768,
- patch_embed_hidden_size=768,
- d_ff=2048,
- d_kv=64,
- num_hidden_layers=12,
- num_attention_heads=12,
- dense_act_fn="gelu_new",
- layer_norm_eps=1e-6,
- dropout_rate=0.0,
- attention_dropout=0.0,
- initializer_range=1e-10,
- initializer_factor=1.0,
- seq_len=4096,
- relative_attention_num_buckets=32,
- relative_attention_max_distance=128,
- **kwargs,
- ):
- super().__init__(**kwargs)
- self.hidden_size = hidden_size
- self.patch_embed_hidden_size = patch_embed_hidden_size
- self.d_ff = d_ff
- self.dropout_rate = dropout_rate
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.initializer_range = initializer_range
- self.initializer_factor = initializer_factor
- self.attention_dropout = attention_dropout
- self.layer_norm_eps = layer_norm_eps
- self.dense_act_fn = dense_act_fn
- self.seq_len = seq_len
- self.relative_attention_num_buckets = relative_attention_num_buckets
- self.relative_attention_max_distance = relative_attention_max_distance
- self.d_kv = d_kv
- @classmethod
- def from_pretrained(
- cls, pretrainehidden_size_name_or_path: Union[str, os.PathLike], **kwargs
- ) -> "PretrainedConfig":
- cls._set_token_in_kwargs(kwargs)
- config_dict, kwargs = cls.get_config_dict(pretrainehidden_size_name_or_path, **kwargs)
- # get the vision config dict if we are loading from Pix2StructConfig
- if config_dict.get("model_type") == "pix2struct":
- config_dict = config_dict["vision_config"]
- if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
- logger.warning(
- f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
- f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
- )
- return cls.from_dict(config_dict, **kwargs)
- class Pix2StructConfig(PretrainedConfig):
- r"""
- [`Pix2StructConfig`] is the configuration class to store the configuration of a
- [`Pix2StructForConditionalGeneration`]. It is used to instantiate a Pix2Struct model according to the specified
- arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will
- yield a similar configuration to that of the Pix2Struct-base
- [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- text_config (`dict`, *optional*):
- Dictionary of configuration options used to initialize [`Pix2StructTextConfig`].
- vision_config (`dict`, *optional*):
- Dictionary of configuration options used to initialize [`Pix2StructVisionConfig`].
- initializer_factor (`float`, *optional*, defaults to 1.0):
- Factor to multiply the initialization range with.
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- is_vqa (`bool`, *optional*, defaults to `False`):
- Whether the model has been fine-tuned for VQA or not.
- kwargs (*optional*):
- Dictionary of keyword arguments.
- Example:
- ```python
- >>> from transformers import Pix2StructConfig, Pix2StructForConditionalGeneration
- >>> # Initializing a Pix2StructConfig with google/pix2struct-base style configuration
- >>> configuration = Pix2StructConfig()
- >>> # Initializing a Pix2StructForConditionalGeneration (with random weights) from the google/pix2struct-base style configuration
- >>> model = Pix2StructForConditionalGeneration(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- >>> # We can also initialize a Pix2StructConfig from a Pix2StructTextConfig and a Pix2StructVisionConfig
- >>> # Initializing a Pix2Struct text and Pix2Struct vision configuration
- >>> config_text = Pix2StructTextConfig()
- >>> config_vision = Pix2StructVisionConfig()
- >>> config = Pix2StructConfig.from_text_vision_configs(config_text, config_vision)
- ```"""
- model_type = "pix2struct"
- def __init__(
- self,
- text_config=None,
- vision_config=None,
- initializer_factor=1.0,
- initializer_range=0.02,
- is_vqa=False,
- tie_word_embeddings=False,
- is_encoder_decoder=True,
- **kwargs,
- ):
- super().__init__(tie_word_embeddings=tie_word_embeddings, is_encoder_decoder=is_encoder_decoder, **kwargs)
- if text_config is None:
- text_config = {}
- logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values.")
- if vision_config is None:
- vision_config = {}
- logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values.")
- self.text_config = Pix2StructTextConfig(**text_config)
- self.vision_config = Pix2StructVisionConfig(**vision_config)
- self.decoder_start_token_id = self.text_config.decoder_start_token_id
- self.pad_token_id = self.text_config.pad_token_id
- self.eos_token_id = self.text_config.eos_token_id
- self.initializer_factor = initializer_factor
- self.initializer_range = initializer_range
- self.text_config.initializer_range = self.initializer_range
- self.vision_config.initializer_range = self.initializer_range
- self.is_vqa = is_vqa
- @classmethod
- def from_text_vision_configs(
- cls, text_config: Pix2StructTextConfig, vision_config: Pix2StructVisionConfig, **kwargs
- ):
- r"""
- Instantiate a [`Pix2StructConfig`] (or a derived class) from pix2struct text model configuration and pix2struct
- vision model configuration.
- Returns:
- [`Pix2StructConfig`]: An instance of a configuration object
- """
- return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|