| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- # coding=utf-8
- # Copyright 2023 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Processor class for Pix2Struct.
- """
- from typing import List, Optional, Union
- from ...feature_extraction_utils import BatchFeature
- from ...processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, Unpack
- from ...tokenization_utils_base import BatchEncoding, PreTokenizedInput, TextInput
- class Pix2StructImagesKwargs(ImagesKwargs, total=False):
- max_patches: Optional[int]
- header_text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]]
- class Pix2StructProcessorKwargs(ProcessingKwargs, total=False):
- images_kwargs: Pix2StructImagesKwargs
- _defaults = {
- "text_kwargs": {
- "add_special_tokens": True,
- "padding": False,
- "stride": 0,
- "return_overflowing_tokens": False,
- "return_special_tokens_mask": False,
- "return_offsets_mapping": False,
- "return_token_type_ids": False,
- "return_length": False,
- "verbose": True,
- },
- "images_kwargs": {
- "max_patches": 2048,
- },
- }
- class Pix2StructProcessor(ProcessorMixin):
- r"""
- Constructs a PIX2STRUCT processor which wraps a BERT tokenizer and PIX2STRUCT image processor into a single
- processor.
- [`Pix2StructProcessor`] offers all the functionalities of [`Pix2StructImageProcessor`] and [`T5TokenizerFast`]. See
- the docstring of [`~Pix2StructProcessor.__call__`] and [`~Pix2StructProcessor.decode`] for more information.
- Args:
- image_processor (`Pix2StructImageProcessor`):
- An instance of [`Pix2StructImageProcessor`]. The image processor is a required input.
- tokenizer (Union[`T5TokenizerFast`, `T5Tokenizer`]):
- An instance of ['T5TokenizerFast`] or ['T5Tokenizer`]. The tokenizer is a required input.
- """
- attributes = ["image_processor", "tokenizer"]
- image_processor_class = "Pix2StructImageProcessor"
- tokenizer_class = ("T5Tokenizer", "T5TokenizerFast")
- def __init__(self, image_processor, tokenizer):
- tokenizer.return_token_type_ids = False
- super().__init__(image_processor, tokenizer)
- def __call__(
- self,
- images=None,
- text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
- audio=None,
- videos=None,
- **kwargs: Unpack[Pix2StructProcessorKwargs],
- ) -> Union[BatchEncoding, BatchFeature]:
- """
- This method uses [`Pix2StructImageProcessor.preprocess`] method to prepare image(s) for the model, and
- [`T5TokenizerFast.__call__`] to prepare text for the model.
- Please refer to the docstring of the above two methods for more information.
- """
- if images is None and text is None:
- raise ValueError("You have to specify either images or text.")
- output_kwargs = self._merge_kwargs(
- Pix2StructProcessorKwargs,
- tokenizer_init_kwargs=self.tokenizer.init_kwargs,
- **kwargs,
- )
- # Get only text
- if images is None and not self.image_processor.is_vqa:
- self.current_processor = self.tokenizer
- text_encoding = self.tokenizer(text=text, **output_kwargs["text_kwargs"])
- return text_encoding
- if not self.image_processor.is_vqa:
- # add pixel_values
- encoding_image_processor = self.image_processor(images, **output_kwargs["images_kwargs"])
- else:
- # add pixel_values and bbox
- output_kwargs["images_kwargs"].setdefault("header_text", text)
- encoding_image_processor = self.image_processor(images, **output_kwargs["images_kwargs"])
- if text is not None and not self.image_processor.is_vqa:
- text_encoding = self.tokenizer(text=text, **output_kwargs["text_kwargs"])
- if "attention_mask" in text_encoding:
- text_encoding["decoder_attention_mask"] = text_encoding.pop("attention_mask")
- if "input_ids" in text_encoding:
- text_encoding["decoder_input_ids"] = text_encoding.pop("input_ids")
- else:
- text_encoding = None
- if text_encoding is not None:
- encoding_image_processor.update(text_encoding)
- return encoding_image_processor
- def batch_decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to Pix2StructTokenizerFast's [`~PreTrainedTokenizer.batch_decode`].
- Please refer to the docstring of this method for more information.
- """
- return self.tokenizer.batch_decode(*args, **kwargs)
- def decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to Pix2StructTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please
- refer to the docstring of this method for more information.
- """
- return self.tokenizer.decode(*args, **kwargs)
- @property
- def model_input_names(self):
- tokenizer_input_names = self.tokenizer.model_input_names
- image_processor_input_names = self.image_processor.model_input_names
- return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|