| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- # coding=utf-8
- # Copyright 2022, UCLA NLP, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PLBART model configuration"""
- from collections import OrderedDict
- from typing import Mapping
- from ...configuration_utils import PretrainedConfig
- from ...onnx import OnnxConfigWithPast
- from ...utils import logging
- logger = logging.get_logger(__name__)
- class PLBartConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`PLBartModel`]. It is used to instantiate an
- PLBART model according to the specified arguments, defining the model architecture. Instantiating a configuration
- with the defaults will yield a similar configuration to that of the PLBART
- [uclanlp/plbart-base](https://huggingface.co/uclanlp/plbart-base) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- vocab_size (`int`, *optional*, defaults to 50005):
- Vocabulary size of the PLBART model. Defines the number of different tokens that can be represented by the
- `inputs_ids` passed when calling [`PLBartModel`].
- d_model (`int`, *optional*, defaults to 768):
- Dimensionality of the layers and the pooler layer.
- encoder_layers (`int`, *optional*, defaults to 6):
- Number of encoder layers.
- decoder_layers (`int`, *optional*, defaults to 6):
- Number of decoder layers.
- encoder_attention_heads (`int`, *optional*, defaults to 12):
- Number of attention heads for each attention layer in the Transformer encoder.
- decoder_attention_heads (`int`, *optional*, defaults to 12):
- Number of attention heads for each attention layer in the Transformer decoder.
- decoder_ffn_dim (`int`, *optional*, defaults to 3072):
- Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
- encoder_ffn_dim (`int`, *optional*, defaults to 3072):
- Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
- activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
- `"relu"`, `"silu"` and `"gelu_new"` are supported.
- dropout (`float`, *optional*, defaults to 0.1):
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
- attention_dropout (`float`, *optional*, defaults to 0.1):
- The dropout ratio for the attention probabilities.
- activation_dropout (`float`, *optional*, defaults to 0.0):
- The dropout ratio for activations inside the fully connected layer.
- classifier_dropout (`float`, *optional*, defaults to 0.0):
- The dropout ratio for classifier.
- max_position_embeddings (`int`, *optional*, defaults to 1024):
- The maximum sequence length that this model might ever be used with. Typically set this to something large
- just in case (e.g., 512 or 1024 or 2048).
- init_std (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- encoder_layerdrop (`float`, *optional*, defaults to 0.0):
- The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
- for more details.
- decoder_layerdrop (`float`, *optional*, defaults to 0.0):
- The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
- for more details.
- scale_embedding (`bool`, *optional*, defaults to `True`):
- Scale embeddings by diving by sqrt(d_model).
- use_cache (`bool`, *optional*, defaults to `True`):
- Whether or not the model should return the last key/values attentions (not used by all models)
- forced_eos_token_id (`int`, *optional*, defaults to 2):
- The id of the token to force as the last generated token when `max_length` is reached. Usually set to
- `eos_token_id`.
- Example:
- ```python
- >>> from transformers import PLBartConfig, PLBartModel
- >>> # Initializing a PLBART uclanlp/plbart-base style configuration
- >>> configuration = PLBartConfig()
- >>> # Initializing a model (with random weights) from the uclanlp/plbart-base style configuration
- >>> model = PLBartModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "plbart"
- keys_to_ignore_at_inference = ["past_key_values"]
- attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
- def __init__(
- self,
- vocab_size=50005,
- max_position_embeddings=1024,
- encoder_layers=6,
- encoder_ffn_dim=3072,
- encoder_attention_heads=12,
- decoder_layers=6,
- decoder_ffn_dim=3072,
- decoder_attention_heads=12,
- encoder_layerdrop=0.0,
- decoder_layerdrop=0.0,
- use_cache=True,
- is_encoder_decoder=True,
- activation_function="gelu",
- d_model=768,
- dropout=0.1,
- attention_dropout=0.1,
- activation_dropout=0.0,
- init_std=0.02,
- classifier_dropout=0.0,
- scale_embedding=True,
- pad_token_id=1,
- bos_token_id=0,
- eos_token_id=2,
- forced_eos_token_id=2,
- **kwargs,
- ):
- self.vocab_size = vocab_size
- self.max_position_embeddings = max_position_embeddings
- self.d_model = d_model
- self.encoder_ffn_dim = encoder_ffn_dim
- self.encoder_layers = encoder_layers
- self.encoder_attention_heads = encoder_attention_heads
- self.decoder_ffn_dim = decoder_ffn_dim
- self.decoder_layers = decoder_layers
- self.decoder_attention_heads = decoder_attention_heads
- self.dropout = dropout
- self.attention_dropout = attention_dropout
- self.activation_dropout = activation_dropout
- self.activation_function = activation_function
- self.init_std = init_std
- self.encoder_layerdrop = encoder_layerdrop
- self.decoder_layerdrop = decoder_layerdrop
- self.classifier_dropout = classifier_dropout
- self.use_cache = use_cache
- self.num_hidden_layers = encoder_layers
- self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
- super().__init__(
- pad_token_id=pad_token_id,
- bos_token_id=bos_token_id,
- eos_token_id=eos_token_id,
- is_encoder_decoder=is_encoder_decoder,
- forced_eos_token_id=forced_eos_token_id,
- **kwargs,
- )
- class PLBartOnnxConfig(OnnxConfigWithPast):
- @property
- def inputs(self) -> Mapping[str, Mapping[int, str]]:
- return OrderedDict(
- [
- ("input_ids", {0: "batch", 1: "sequence"}),
- ("attention_mask", {0: "batch", 1: "sequence"}),
- ]
- )
- @property
- def outputs(self) -> Mapping[str, Mapping[int, str]]:
- if self.use_past:
- return OrderedDict(
- [
- ("last_hidden_state", {0: "batch", 1: "sequence"}),
- ("past_keys", {0: "batch", 2: "sequence"}),
- ("encoder_last_hidden_state", {0: "batch", 1: "sequence"}),
- ]
- )
- else:
- return OrderedDict(
- [
- ("last_hidden_state", {0: "batch", 1: "sequence"}),
- ("encoder_last_hidden_state", {0: "batch", 1: "sequence"}),
- ]
- )
|