| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 |
- # coding=utf-8
- # Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """ProphetNet model configuration"""
- from typing import Callable, Optional, Union
- from ...configuration_utils import PretrainedConfig
- from ...utils import logging
- logger = logging.get_logger(__name__)
- class ProphetNetConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`ProphetNetModel`]. It is used to instantiate a
- ProphetNet model according to the specified arguments, defining the model architecture. Instantiating a
- configuration with the defaults will yield a similar configuration to that of the ProphetNet
- [microsoft/prophetnet-large-uncased](https://huggingface.co/microsoft/prophetnet-large-uncased) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- activation_dropout (`float`, *optional*, defaults to 0.1):
- The dropout ratio for activations inside the fully connected layer.
- activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
- `"relu"`, `"silu"` and `"gelu_new"` are supported.
- vocab_size (`int`, *optional*, defaults to 30522):
- Vocabulary size of the ProphetNET model. Defines the number of different tokens that can be represented by
- the `inputs_ids` passed when calling [`ProphetNetModel`].
- hidden_size (`int`, *optional*, defaults to 1024):
- Dimensionality of the layers and the pooler layer.
- encoder_ffn_dim (`int`, *optional*, defaults to 4096):
- Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
- num_encoder_layers (`int`, *optional*, defaults to 12):
- Number of encoder layers.
- num_encoder_attention_heads (`int`, *optional*, defaults to 16):
- Number of attention heads for each attention layer in the Transformer encoder.
- decoder_ffn_dim (`int`, *optional*, defaults to 4096):
- Dimensionality of the `intermediate` (often named feed-forward) layer in decoder.
- num_decoder_layers (`int`, *optional*, defaults to 12):
- Number of decoder layers.
- num_decoder_attention_heads (`int`, *optional*, defaults to 16):
- Number of attention heads for each attention layer in the Transformer decoder.
- attention_dropout (`float`, *optional*, defaults to 0.1):
- The dropout ratio for the attention probabilities.
- dropout (`float`, *optional*, defaults to 0.1):
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
- max_position_embeddings (`int`, *optional*, defaults to 512):
- The maximum sequence length that this model might ever be used with. Typically set this to something large
- just in case (e.g., 512 or 1024 or 2048).
- init_std (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- add_cross_attention (`bool`, *optional*, defaults to `True`):
- Whether cross-attention layers should be added to the model.
- is_encoder_decoder (`bool`, *optional*, defaults to `True`):
- Whether this is an encoder/decoder model.
- pad_token_id (`int`, *optional*, defaults to 1)
- Padding token id.
- bos_token_id (`int`, *optional*, defaults to 0)
- Beginning of stream token id.
- eos_token_id (`int`, *optional*, defaults to 2)
- End of stream token id.
- ngram (`int`, *optional*, defaults to 2)
- Number of future tokens to predict. Set to 1 to be same as traditional Language model to predict next first
- token.
- num_buckets (`int`, *optional*, defaults to 32)
- The number of buckets to use for each attention layer. This is for relative position calculation. See the
- [T5 paper](see https://arxiv.org/abs/1910.10683) for more details.
- relative_max_distance (`int`, *optional*, defaults to 128)
- Relative distances greater than this number will be put into the last same bucket. This is for relative
- position calculation. See the [T5 paper](see https://arxiv.org/abs/1910.10683) for more details.
- disable_ngram_loss (`bool`, *optional*, defaults to `False`):
- Whether be trained predicting only the next first token.
- eps (`float`, *optional*, defaults to 0.0):
- Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label
- smoothing is performed.
- use_cache (`bool`, *optional*, defaults to `True`):
- Whether or not the model should return the last key/values attentions (not used by all models).
- """
- model_type = "prophetnet"
- keys_to_ignore_at_inference = ["past_key_values"]
- attribute_map = {
- "num_attention_heads": "num_encoder_attention_heads",
- }
- def __init__(
- self,
- activation_dropout: Optional[float] = 0.1,
- activation_function: Optional[Union[str, Callable]] = "gelu",
- vocab_size: Optional[int] = 30522,
- hidden_size: Optional[int] = 1024,
- encoder_ffn_dim: Optional[int] = 4096,
- num_encoder_layers: Optional[int] = 12,
- num_encoder_attention_heads: Optional[int] = 16,
- decoder_ffn_dim: Optional[int] = 4096,
- num_decoder_layers: Optional[int] = 12,
- num_decoder_attention_heads: Optional[int] = 16,
- attention_dropout: Optional[float] = 0.1,
- dropout: Optional[float] = 0.1,
- max_position_embeddings: Optional[int] = 512,
- init_std: Optional[float] = 0.02,
- is_encoder_decoder: Optional[bool] = True,
- add_cross_attention: Optional[bool] = True,
- decoder_start_token_id: Optional[int] = 0,
- ngram: Optional[int] = 2,
- num_buckets: Optional[int] = 32,
- relative_max_distance: Optional[int] = 128,
- disable_ngram_loss: Optional[bool] = False,
- eps: Optional[float] = 0.0,
- use_cache: Optional[bool] = True,
- pad_token_id: Optional[int] = 0,
- bos_token_id: Optional[int] = 1,
- eos_token_id: Optional[int] = 2,
- **kwargs,
- ):
- self.vocab_size = vocab_size
- self.hidden_size = hidden_size
- self.encoder_ffn_dim = encoder_ffn_dim
- self.num_encoder_layers = num_encoder_layers
- self.num_encoder_attention_heads = num_encoder_attention_heads
- self.decoder_ffn_dim = decoder_ffn_dim
- self.num_decoder_layers = num_decoder_layers
- self.num_decoder_attention_heads = num_decoder_attention_heads
- self.max_position_embeddings = max_position_embeddings
- self.init_std = init_std # Normal(0, this parameter)
- self.activation_function = activation_function
- # parameters for prophetnet
- self.ngram = ngram
- self.num_buckets = num_buckets
- self.relative_max_distance = relative_max_distance
- self.disable_ngram_loss = disable_ngram_loss
- self.eps = eps
- # 3 Types of Dropout
- self.attention_dropout = attention_dropout
- self.activation_dropout = activation_dropout
- self.dropout = dropout
- self.use_cache = use_cache
- super().__init__(
- pad_token_id=pad_token_id,
- bos_token_id=bos_token_id,
- eos_token_id=eos_token_id,
- is_encoder_decoder=is_encoder_decoder,
- add_cross_attention=add_cross_attention,
- decoder_start_token_id=decoder_start_token_id,
- **kwargs,
- )
- @property
- def num_hidden_layers(self) -> int:
- return self.num_encoder_layers + self.num_decoder_layers
- @num_hidden_layers.setter
- def num_hidden_layers(self, value):
- raise NotImplementedError(
- "This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and"
- " `num_decoder_layers`."
- )
|