| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311 |
- # coding=utf-8
- # Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch ProphetNet model, ported from ProphetNet repo(fairsequery_states version)."""
- import copy
- import math
- import warnings
- from dataclasses import dataclass
- from typing import Optional, Tuple, Union
- import torch
- import torch.utils.checkpoint
- from torch import Tensor, nn
- from torch.nn import LayerNorm
- from ...activations import ACT2FN
- from ...generation import GenerationMixin
- from ...modeling_outputs import BaseModelOutput
- from ...modeling_utils import PreTrainedModel
- from ...utils import (
- ModelOutput,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- logging,
- replace_return_docstrings,
- )
- from .configuration_prophetnet import ProphetNetConfig
- logger = logging.get_logger(__name__)
- _CONFIG_FOR_DOC = "ProphenetConfig"
- _CHECKPOINT_FOR_DOC = "microsoft/prophetnet-large-uncased"
- PROPHETNET_START_DOCSTRING = r"""
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- Original ProphetNet code can be found [here](https://github.com/microsoft/ProphetNet). Checkpoints were converted
- from original Fairseq checkpoints. For more information on the checkpoint conversion, please take a look at the
- file `convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py`.
- This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
- it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and
- behavior.
- Parameters:
- config ([`ProphetNetConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- PROPHETNET_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
- it.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
- Indices of decoder input sequence tokens in the vocabulary.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are decoder input IDs?](../glossary#decoder-input-ids)
- ProphetNet uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
- `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
- `past_key_values`).
- decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
- Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
- be used by default.
- head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
- Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
- `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
- hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
- past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
- Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
- `past_key_values`).
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- PROPHETNET_STANDALONE_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
- it.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- def softmax(hidden_state, dim, onnx_trace=False):
- if onnx_trace:
- return nn.functional.softmax(hidden_state.float(), dim=dim)
- else:
- return nn.functional.softmax(hidden_state, dim=dim, dtype=torch.float32)
- def ngram_attention_bias(sequence_length, ngram, device, dtype):
- """
- This function computes the bias for the predict stream
- """
- left_block = (
- torch.ones((ngram, sequence_length, sequence_length), device=device, dtype=dtype) * torch.finfo(dtype).min
- )
- right_block = left_block.detach().clone()
- # create bias
- for stream_idx in range(ngram):
- right_block[stream_idx].fill_diagonal_(0, wrap=False)
- left_block[stream_idx].triu_(-stream_idx + 1)
- left_block[:, :, 0] = 0
- return torch.cat([left_block, right_block], dim=2)
- def compute_relative_buckets(num_buckets, max_distance, relative_positions, is_bidirectional=False):
- """
- This function computes individual parts of the relative position buckets. For more detail, see paper.
- """
- inv_relative_positions = -relative_positions
- rel_positions_bucket = 0
- if is_bidirectional:
- num_buckets = num_buckets // 2
- rel_positions_bucket = (
- rel_positions_bucket
- + torch.lt(inv_relative_positions, torch.zeros_like(inv_relative_positions)).int() * num_buckets
- )
- inv_relative_positions = torch.abs(inv_relative_positions)
- else:
- inv_relative_positions = torch.max(inv_relative_positions, torch.zeros_like(inv_relative_positions))
- max_exact = num_buckets // 2
- is_small = torch.lt(inv_relative_positions, max_exact)
- val_if_large = max_exact + torch.log(inv_relative_positions.float() / max_exact) / math.log(
- max_distance / max_exact
- ) * (num_buckets - max_exact)
- val_if_large = torch.min(val_if_large, torch.ones_like(val_if_large) * (num_buckets - 1)).int()
- rel_positions_bucket = rel_positions_bucket + torch.where(is_small, inv_relative_positions.int(), val_if_large)
- return rel_positions_bucket
- def compute_all_stream_relative_buckets(num_buckets, max_distance, position_ids):
- """
- This function computes both main and predict relative position buckets. For more detail, see paper.
- """
- # main stream
- main_stream_relative_positions = position_ids.unsqueeze(1).repeat(1, position_ids.size(-1), 1)
- main_stream_relative_positions = main_stream_relative_positions - position_ids.unsqueeze(-1)
- # predicting stream
- predicting_stream_relative_positions = torch.cat((position_ids - 1, position_ids), dim=-1).unsqueeze(1)
- predicting_stream_relative_positions = predicting_stream_relative_positions.repeat(1, position_ids.size(-1), 1)
- predicting_stream_relative_positions = predicting_stream_relative_positions - position_ids.unsqueeze(-1)
- # get both position buckets
- main_relative_position_buckets = compute_relative_buckets(
- num_buckets, max_distance, main_stream_relative_positions, is_bidirectional=False
- )
- predict_relative_position_buckets = compute_relative_buckets(
- num_buckets, max_distance, predicting_stream_relative_positions, is_bidirectional=False
- )
- return main_relative_position_buckets, predict_relative_position_buckets
- @dataclass
- class ProphetNetSeq2SeqLMOutput(ModelOutput):
- """
- Base class for sequence-to-sequence language models outputs.
- Args:
- loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
- Language modeling loss.
- logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`):
- Prediction scores of the main stream language modeling head (scores for each vocabulary token before
- SoftMax).
- logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`):
- Prediction scores of the predict stream language modeling head (scores for each vocabulary token before
- SoftMax).
- past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
- List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
- num_attn_heads, decoder_sequence_length, embed_size_per_head)`).
- Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
- used (see `past_key_values` input) to speed up sequential decoding.
- decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
- shape `(batch_size, decoder_sequence_length, hidden_size)`.
- Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs.
- decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
- shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`.
- Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding
- outputs.
- decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
- decoder_sequence_length, decoder_sequence_length)`.
- Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
- self-attention heads.
- decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
- decoder_sequence_length, decoder_sequence_length)`.
- Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the
- weighted average in the self-attention heads.
- cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
- encoder_sequence_length, decoder_sequence_length)`.
- Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to
- compute the weighted average in the
- encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
- Sequence of hidden-states at the output of the last layer of the encoder of the model.
- encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
- shape `(batch_size, encoder_sequence_length, hidden_size)`.
- Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
- encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
- encoder_sequence_length, encoder_sequence_length)`. Attentions weights of the encoder, after the attention
- softmax, used to compute the weighted average in the self-attention heads.
- """
- loss: Optional[torch.FloatTensor] = None
- logits: torch.FloatTensor = None
- logits_ngram: Optional[torch.FloatTensor] = None
- past_key_values: Optional[Tuple[torch.FloatTensor]] = None
- decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
- decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
- decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
- decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None
- cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
- encoder_last_hidden_state: Optional[torch.FloatTensor] = None
- encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
- encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
- @property
- def decoder_cross_attentions(self):
- warnings.warn(
- "`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`"
- " instead.",
- FutureWarning,
- )
- return self.cross_attentions
- @dataclass
- class ProphetNetSeq2SeqModelOutput(ModelOutput):
- """
- Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential
- decoding.
- Args:
- last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`):
- Sequence of main stream hidden-states at the output of the last layer of the decoder of the model.
- If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
- hidden_size)` is output.
- last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size,ngram * decoder_sequence_length, config.vocab_size)`, *optional*):
- Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model.
- past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
- List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
- num_attn_heads, decoder_sequence_length, embed_size_per_head)`).
- Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
- used (see `past_key_values` input) to speed up sequential decoding.
- decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
- shape `(batch_size, decoder_sequence_length, hidden_size)`.
- Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs.
- decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
- shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`.
- Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding
- outputs.
- decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
- decoder_sequence_length, decoder_sequence_length)`.
- Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
- self-attention heads.
- decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
- decoder_sequence_length, decoder_sequence_length)`.
- Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the
- weighted average in the
- cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
- encoder_sequence_length, decoder_sequence_length)`.
- Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to
- compute the weighted average in the
- encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
- Sequence of hidden-states at the output of the last layer of the encoder of the model.
- encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
- shape `(batch_size, encoder_sequence_length, hidden_size)`.
- Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
- encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
- encoder_sequence_length, encoder_sequence_length)`.
- Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
- self-attention heads.
- """
- last_hidden_state: torch.FloatTensor
- last_hidden_state_ngram: Optional[torch.FloatTensor] = None
- past_key_values: Optional[Tuple[torch.FloatTensor]] = None
- decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
- decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
- decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
- decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None
- cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
- encoder_last_hidden_state: Optional[torch.FloatTensor] = None
- encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
- encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
- @property
- def decoder_cross_attentions(self):
- warnings.warn(
- "`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`"
- " instead.",
- FutureWarning,
- )
- return self.cross_attentions
- @dataclass
- class ProphetNetDecoderModelOutput(ModelOutput):
- """
- Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
- Args:
- last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`):
- Sequence of main stream hidden-states at the output of the last layer of the decoder of the model.
- If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
- hidden_size)` is output.
- last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`):
- Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model.
- past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
- List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
- num_attn_heads, decoder_sequence_length, embed_size_per_head)`).
- Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
- used (see `past_key_values` input) to speed up sequential decoding.
- hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
- shape `(batch_size, decoder_sequence_length, hidden_size)`.
- Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs.
- ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
- shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`.
- Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding
- outputs.
- attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
- decoder_sequence_length, decoder_sequence_length)`.
- Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
- self-attention heads.
- ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
- decoder_sequence_length, decoder_sequence_length)`.
- Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the
- weighted average in the
- cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
- encoder_sequence_length, decoder_sequence_length)`.
- Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to
- compute the weighted average in the
- """
- last_hidden_state: torch.FloatTensor
- last_hidden_state_ngram: Optional[torch.FloatTensor] = None
- past_key_values: Optional[Tuple[torch.FloatTensor]] = None
- hidden_states: Optional[Tuple[torch.FloatTensor]] = None
- hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None
- attentions: Optional[Tuple[torch.FloatTensor]] = None
- ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None
- cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
- @dataclass
- class ProphetNetDecoderLMOutput(ModelOutput):
- """
- Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding).
- Args:
- loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
- Language modeling loss.
- logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`):
- Prediction scores of the main stream language modeling head (scores for each vocabulary token before
- SoftMax).
- logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`):
- Prediction scores of the predict stream language modeling head (scores for each vocabulary token before
- SoftMax).
- past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
- List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
- num_attn_heads, decoder_sequence_length, embed_size_per_head)`).
- Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
- used (see `past_key_values` input) to speed up sequential decoding.
- hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
- shape `(batch_size, decoder_sequence_length, hidden_size)`.
- Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs.
- ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
- shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`.
- Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding
- outputs.
- attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
- decoder_sequence_length, decoder_sequence_length)`.
- Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
- self-attention heads.
- ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
- decoder_sequence_length, decoder_sequence_length)`.
- Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the
- weighted average in the
- cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads,
- encoder_sequence_length, decoder_sequence_length)`.
- Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to
- compute the weighted average in the
- """
- loss: Optional[torch.FloatTensor] = None
- logits: torch.FloatTensor = None
- logits_ngram: Optional[torch.FloatTensor] = None
- past_key_values: Optional[Tuple[torch.FloatTensor]] = None
- hidden_states: Optional[Tuple[torch.FloatTensor]] = None
- hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None
- attentions: Optional[Tuple[torch.FloatTensor]] = None
- ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None
- cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
- class ProphetNetPreTrainedModel(PreTrainedModel):
- config_class = ProphetNetConfig
- base_model_prefix = "prophetnet"
- supports_gradient_checkpointing = True
- def _init_weights(self, module):
- if isinstance(module, nn.Linear):
- module.weight.data.normal_(mean=0.0, std=self.config.init_std)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=self.config.init_std)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- def _shift_right(self, input_ids):
- decoder_start_token_id = self.config.decoder_start_token_id
- pad_token_id = self.config.pad_token_id
- assert decoder_start_token_id is not None, (
- "self.model.config.decoder_start_token_id has to be defined. In ProphetNet it is usually set to the"
- " pad_token_id. See ProphetNet docs for more information"
- )
- # shift inputs to the right
- shifted_input_ids = input_ids.new_zeros(input_ids.shape)
- shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
- shifted_input_ids[..., 0] = decoder_start_token_id
- assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
- # replace possible -100 values in labels by `pad_token_id`
- shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
- assert torch.all(shifted_input_ids >= 0).item(), "Verify that `shifted_input_ids` has only positive values"
- return shifted_input_ids
- class ProphetNetPositionalEmbeddings(nn.Embedding):
- """
- This module learns positional embeddings up to a fixed maximum size. Padding ids are ignored by either offsetting
- based on padding_idx or by setting padding_idx to None and ensuring that the appropriate position ids are passed to
- the forward function.
- """
- def __init__(self, config: ProphetNetConfig) -> None:
- self.max_length = config.max_position_embeddings
- super().__init__(config.max_position_embeddings, config.hidden_size, config.pad_token_id)
- def forward(self, inputs_shape, device, attention_mask=None, past_key_values=None, position_ids=None):
- assert (position_ids is None) or (
- self.padding_idx is None
- ), "If position_ids is pre-computed then padding_idx should not be set."
- if position_ids is None:
- if past_key_values is not None:
- # position_ids is the same for every token when decoding a single step
- # Without the int() cast, it doesn't work in some cases when exporting to ONNX
- prev_num_input_ids = past_key_values[0][0].shape[2]
- num_input_ids = inputs_shape[1] + prev_num_input_ids
- position_ids = torch.ones((1, 1), dtype=torch.long, device=device) * (
- int(self.padding_idx + num_input_ids)
- )
- else:
- if attention_mask is None:
- attention_mask = torch.ones(inputs_shape, dtype=torch.long, device=device)
- # retrieve position_ids from input_ids / attention_mask
- position_ids = (
- torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask
- ).long() + self.padding_idx
- # make sure position_ids are not bigger then max_length
- position_ids = position_ids.clamp(0, self.max_length - 1)
- return super().forward(position_ids), position_ids
- def _forward(self, position_ids):
- return super().forward(position_ids)
- class ProphetNetAttention(nn.Module):
- """Multi-headed attention from 'Attention Is All You Need' paper"""
- def __init__(
- self,
- config: ProphetNetConfig,
- num_attn_heads: int,
- ):
- super().__init__()
- hidden_size = config.hidden_size
- self.attention_dropout = config.attention_dropout
- self.dropout = config.dropout
- self.num_attn_heads = num_attn_heads
- self.head_dim = hidden_size // num_attn_heads
- assert self.head_dim * num_attn_heads == hidden_size, (
- "`config.hidden_size` must be divisible by `config.num_encoder_attention_heads` and"
- " `config.num_decoder_attention_heads`"
- )
- self.key_proj = nn.Linear(hidden_size, hidden_size)
- self.value_proj = nn.Linear(hidden_size, hidden_size)
- self.query_proj = nn.Linear(hidden_size, hidden_size)
- self.out_proj = nn.Linear(hidden_size, hidden_size)
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
- return tensor.view(bsz, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous()
- def forward(
- self,
- hidden_states,
- key_value_states: Optional[Tensor] = None,
- attention_mask: Optional[Tensor] = None,
- layer_head_mask: Optional[Tensor] = None,
- past_key_value: Optional[Tuple[Tensor]] = None,
- output_attentions: bool = False,
- ) -> Tuple[Tensor, Optional[Tensor]]:
- batch_size, tgt_len, hidden_size = hidden_states.size()
- # if key_value_states are provided this layer is used as a cross-attention layer
- # for the decoder
- is_cross_attention = key_value_states is not None
- assert list(hidden_states.size()) == [
- batch_size,
- tgt_len,
- hidden_size,
- ], f"Size of hidden states should be {batch_size, tgt_len, hidden_size}, but is {hidden_states.size()}"
- # previous time steps are cached - no need to recompute key and value if they are static
- query_states = self.query_proj(hidden_states) / (self.head_dim**0.5)
- if is_cross_attention and past_key_value is not None:
- # reuse k,v, cross_attentions
- key_states = past_key_value[0]
- value_states = past_key_value[1]
- elif is_cross_attention:
- # cross_attentions
- key_states = self._shape(self.key_proj(key_value_states), -1, batch_size)
- value_states = self._shape(self.value_proj(key_value_states), -1, batch_size)
- else:
- # self_attention
- key_states = self._shape(self.key_proj(hidden_states), -1, batch_size)
- value_states = self._shape(self.value_proj(hidden_states), -1, batch_size)
- if is_cross_attention:
- # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
- # Further calls to cross_attention layer can then reuse all cross-attention
- # key/value_states (first "if" case)
- # if encoder bi-directional self-attention `past_key_value` is always `None`
- past_key_value = (key_states, value_states)
- # project states into the correct shape
- proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim)
- query_states = self._shape(query_states, tgt_len, batch_size).view(*proj_shape)
- key_states = key_states.view(*proj_shape)
- value_states = value_states.view(*proj_shape)
- src_len = key_states.size(2)
- attn_weights = torch.einsum("bsij,bsjk->bsik", query_states, key_states.transpose(2, 3))
- expected_shape = (batch_size, self.num_attn_heads, tgt_len, src_len)
- if attn_weights.size() != expected_shape:
- raise ValueError(f"Attention weights should have size {expected_shape}, but is {attn_weights.size()}")
- # This is part of a workaround to get around fork/join parallelism not supporting Optional types.
- if attention_mask is not None and attention_mask.dim() == 0:
- attention_mask = None
- expected_shape = (batch_size, self.num_attn_heads, 1, src_len)
- if attention_mask is not None and attention_mask.size() != expected_shape:
- raise ValueError(f"Attention mask should have size {expected_shape}, but is {attention_mask.size()}")
- if attention_mask is not None: # don't attend to padding symbols
- attn_weights = attn_weights + attention_mask
- if output_attentions:
- attn_weights_reshaped = attn_weights
- else:
- attn_weights_reshaped = None
- attn_weights = nn.functional.softmax(attn_weights, dim=-1)
- if layer_head_mask is not None:
- assert layer_head_mask.size() == (self.num_attn_heads,), (
- f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is"
- f" {layer_head_mask.size()}"
- )
- attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(
- batch_size, self.num_attn_heads, tgt_len, src_len
- )
- # apply head_mask also on attn_weights_reshaped which is used for n-gram attention inside the model
- attn_weights_reshaped = layer_head_mask.view(1, -1, 1, 1) * attn_weights_reshaped
- attn_probs = nn.functional.dropout(
- attn_weights,
- p=self.attention_dropout,
- training=self.training,
- )
- attn_output = torch.einsum("bsij,bsjk->bsik", attn_probs, value_states)
- expected_shape = (batch_size, self.num_attn_heads, tgt_len, self.head_dim)
- if attn_output.size() != expected_shape:
- raise ValueError(f"`attn_output` should have shape {expected_shape}, but is of shape {attn_output.size()}")
- attn_output = attn_output.transpose(1, 2).reshape(batch_size, tgt_len, hidden_size)
- attn_output = self.out_proj(attn_output)
- attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training)
- return attn_output, attn_weights_reshaped, past_key_value
- class ProphetNetFeedForward(nn.Module):
- """
- This is the residual two feed-forward layer block based on the original Transformer implementation.
- """
- def __init__(self, config: ProphetNetConfig, ffn_dim: int):
- super().__init__()
- self.activation_fn = ACT2FN[config.activation_function]
- self.intermediate = nn.Linear(config.hidden_size, ffn_dim)
- self.output = nn.Linear(ffn_dim, config.hidden_size)
- self.activation_dropout = config.activation_dropout
- self.dropout = config.dropout
- def forward(self, hidden_states):
- hidden_states = self.intermediate(hidden_states)
- hidden_states = self.activation_fn(hidden_states)
- hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
- hidden_states = self.output(hidden_states)
- hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
- return hidden_states
- class ProphetNetNgramSelfAttention(nn.Module):
- def __init__(self, config: ProphetNetConfig):
- super().__init__()
- self.hidden_size = config.hidden_size
- self.num_buckets = config.num_buckets
- self.relative_max_distance = config.relative_max_distance
- self.num_attn_heads = config.num_decoder_attention_heads
- self.dropout = config.dropout
- self.attention_dropout = config.attention_dropout
- self.head_dim = config.hidden_size // self.num_attn_heads
- self.ngram = config.ngram
- assert (
- self.head_dim * self.num_attn_heads == config.hidden_size
- ), "config.hidden_size must be divisible by num_attn_heads"
- # key, value, query projection
- self.key_proj = nn.Linear(config.hidden_size, config.hidden_size)
- self.value_proj = nn.Linear(config.hidden_size, config.hidden_size)
- self.query_proj = nn.Linear(config.hidden_size, config.hidden_size)
- # out projection
- self.out_proj = nn.Linear(config.hidden_size, config.hidden_size)
- # rel position embeddings
- self.relative_pos_embeddings = nn.Linear(config.hidden_size, self.num_buckets * self.num_attn_heads)
- # for onnx runtime
- self.onnx_trace = False
- def _shape(self, tensor, seq_len, batch_size):
- return tensor.view(batch_size, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous()
- def prepare_for_onnx_export_(self):
- self.onnx_trace = True
- def forward(
- self,
- hidden_states,
- past_key_value: Optional[Tuple[Tensor]] = None,
- attention_mask=None,
- layer_head_mask=None,
- extended_predict_attention_mask=None,
- main_relative_position_buckets=None,
- predict_relative_position_buckets=None,
- position_ids=None,
- ):
- batch_size, ngram_sequence_length, hidden_size = hidden_states.size()
- assert list(hidden_states.size()) == [batch_size, ngram_sequence_length, hidden_size], (
- f"`hidden_states` should be of shape {batch_size, ngram_sequence_length, hidden_size}, but is of shape"
- f" {hidden_states.shape}"
- )
- # project
- query_states = self.query_proj(hidden_states)
- key_states = self.key_proj(hidden_states)
- value_states = self.value_proj(hidden_states)
- # normalize
- query_states = query_states / (self.head_dim**0.5)
- # reshape
- query_states = self._shape(query_states, ngram_sequence_length, batch_size)
- key_states = self._shape(key_states, -1, batch_size)
- value_states = self._shape(value_states, -1, batch_size)
- proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim)
- query_states = query_states.view(*proj_shape)
- key_states = key_states.view(*proj_shape)
- value_states = value_states.view(*proj_shape)
- # chunk into main stream and predict stream
- hidden_states_list = hidden_states.chunk(1 + self.ngram, dim=1)
- query_states_list = query_states.chunk(1 + self.ngram, dim=2)
- key_states_list = key_states.chunk(1 + self.ngram, dim=2)
- value_states_list = value_states.chunk(1 + self.ngram, dim=2)
- main_hidden_states, hidden_states_predict_list = hidden_states_list[0], hidden_states_list[1:]
- main_query_states, predict_query_states_list = query_states_list[0], query_states_list[1:]
- main_key_states, predict_key_states_list = key_states_list[0], key_states_list[1:]
- main_value_states, predict_value_states_list = value_states_list[0], value_states_list[1:]
- # saved states are stored with shape (batch_size, num_attn_heads, seq_len, head_dim)
- if past_key_value is not None:
- prev_main_key_states = past_key_value[0]
- main_key_states = torch.cat((prev_main_key_states, main_key_states), dim=2)
- prev_main_value_states = past_key_value[1]
- main_value_states = torch.cat((prev_main_value_states, main_value_states), dim=2)
- # Update cache
- past_key_value = (main_key_states, main_value_states)
- # get seq_length of main stream only
- sequence_length = ngram_sequence_length // (1 + self.ngram)
- # MAIN-STREAM
- # main attn weights
- # [batch_size, number_heads, sequence_length, head_dimesion]
- # x [batch_size, number_heads, head_dimesion, sequence_length]
- # -> [batch_size, number_heads, sequence_length, sequence_length]
- main_attn_weights = torch.einsum("bntc,bncs->bnts", main_query_states, main_key_states.transpose(2, 3))
- # retrieve relative position embeddings for each layer -> see paper for more details
- main_relative_pos_embeddings = self.get_main_relative_pos_embeddings(
- main_hidden_states, main_attn_weights, position_ids, main_relative_position_buckets
- )
- main_attn_weights = main_attn_weights + main_relative_pos_embeddings
- if attention_mask is not None:
- main_attn_weights = main_attn_weights + attention_mask
- main_attn_probs = softmax(
- main_attn_weights,
- dim=-1,
- onnx_trace=self.onnx_trace,
- ).type_as(main_attn_weights)
- if layer_head_mask is not None:
- assert layer_head_mask.size() == (self.num_attn_heads,), (
- f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is"
- f" {layer_head_mask.size()}"
- )
- main_attn_probs = layer_head_mask.view(1, -1, 1, 1) * main_attn_probs.view(
- batch_size, self.num_attn_heads, -1, sequence_length
- )
- main_attn_probs = nn.functional.dropout(main_attn_probs, p=self.attention_dropout, training=self.training)
- # project to attn_output
- # [batch_size, number_heads, sequence_length, sequence_length]
- # x [batch_size, number_heads, sequence_length, head_dimesion]
- # -> [batch_size, number_heads, sequence_length, head_dimesion]
- main_attn_output = torch.einsum("bntc,bncs->bnts", main_attn_probs, main_value_states)
- # reshape so that num_heads dim is merged into last `head_dim` axis
- main_attn_output = main_attn_output.transpose(1, 2).reshape(batch_size, 1, sequence_length, hidden_size)
- main_attn_output = self.out_proj(main_attn_output)
- # PREDICT-STREAM
- # [batch_size, ngram, number_heads, sequence_length, head_dimesion]
- predict_query_states = torch.stack(predict_query_states_list, 1).view(
- batch_size, self.ngram, self.num_attn_heads, sequence_length, self.head_dim
- )
- # [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion]
- predict_key_states = torch.stack([torch.cat([main_key_states, key], 2) for key in predict_key_states_list], 1)
- # [batch_size, sequence_length, ngram, hidden_size]
- predict_hidden_states = torch.stack(hidden_states_predict_list, dim=2)
- # [batch_size, number_heads, ngram, 2*sequence_length, head_dimesion]
- predict_value_states = torch.cat(
- [torch.cat([main_value_states, v_p], 2).unsqueeze(2) for v_p in predict_value_states_list], 2
- )
- # [batch_size, ngram, number_heads, sequence_length, head_dimesion]
- # x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion]
- # -> [batch_size, ngram, number_heads, sequence_length, 2*sequence_length]
- predict_attn_weights = torch.einsum("bnhtc,bnhsc->bnhts", (predict_query_states, predict_key_states))
- # retrieve relative position embeddings for each layer -> see paper for more details
- # [batch_size, ngram, number_heads, sequence_length, predict_relative_pos_embeddings]
- predict_relative_pos_embeddings = self.get_predict_relative_pos_embeddings(
- predict_hidden_states, predict_attn_weights, position_ids, predict_relative_position_buckets
- )
- # [batch_size, ngram, number_heads, sequence_length, 2*sequence_length]
- predict_attn_weights = predict_attn_weights + predict_relative_pos_embeddings
- if extended_predict_attention_mask is not None:
- # Permuting Predict attention mask to [batch_size, ngram, number_heads, sequence_length, 2*sequence_length]
- extended_predict_attention_mask = extended_predict_attention_mask.permute(0, 2, 1, 3, 4)
- extended_predict_attention_mask = extended_predict_attention_mask.to(predict_attn_weights.dtype)
- predict_attn_weights = predict_attn_weights + extended_predict_attention_mask
- predict_attn_probs = softmax(
- predict_attn_weights,
- dim=-1,
- onnx_trace=self.onnx_trace,
- ).type_as(predict_attn_weights)
- if layer_head_mask is not None:
- assert layer_head_mask.size() == (self.num_attn_heads,), (
- f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is"
- f" {layer_head_mask.size()}"
- )
- predict_attn_probs = layer_head_mask.view(1, 1, -1, 1, 1) * predict_attn_probs
- predict_attn_probs = nn.functional.dropout(
- predict_attn_probs, p=self.attention_dropout, training=self.training
- )
- # project to attention output
- # [batch_size, ngram, number_heads, sequence_length, 2*sequence_length]
- # x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion]
- # -> [batch_size, ngram, number_heads, sequence_length, head_dimesion]
- predict_attn_output = torch.einsum(
- "bnhts,bnhsc->bnhtc", (predict_attn_probs, predict_value_states.transpose(1, 2))
- )
- # reshape so that num_heads dim is merged into last `head_dim` axis
- # [batch_size, ngram, number_heads, sequence_length, head_dimesion] -> [batch_size, ngram, sequence_length, hidden_size]
- predict_attn_output = predict_attn_output.transpose(2, 3)
- predict_attn_output = predict_attn_output.reshape(batch_size, self.ngram, sequence_length, hidden_size)
- predict_attn_output = self.out_proj(predict_attn_output)
- # concat to single attn output
- # [batch_size, (1+ngram)*sequence_length, hidden_size]
- attn_output = torch.cat([main_attn_output, predict_attn_output], 1).view(batch_size, -1, hidden_size)
- # reshape into better form for `config.output_attentions`
- main_attn_probs = main_attn_probs.view(batch_size, self.num_attn_heads, sequence_length, -1)
- attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training)
- return attn_output, main_attn_probs, predict_attn_probs, past_key_value
- def get_main_relative_pos_embeddings(
- self, hidden_states, attn_weights, position_ids, main_relative_position_buckets
- ):
- # input hidden_states [batch_size, sequence_length, hidden_size]
- # input attn_weights [batch_size, num_heads, sequence_length, sequence_length]
- # input position_ids [batch_size, sequence_length] or [1,1]
- batch_size, num_attn_heads, tgt_len, src_len = attn_weights.shape
- attn_weights = attn_weights.view(batch_size, num_attn_heads, tgt_len, src_len)
- if main_relative_position_buckets is None:
- batch_size, sequence_length = hidden_states.shape[:2]
- relative_positions = (
- torch.arange(1, attn_weights.shape[-1] + 1)
- .unsqueeze(0)
- .unsqueeze(0)
- .repeat(batch_size, sequence_length, 1)
- .to(position_ids.device)
- )
- # [batch_size, sequence_length, sequence_length+1]
- relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1)
- main_relative_position_buckets = compute_relative_buckets(
- self.num_buckets, self.relative_max_distance, relative_positions, False
- )
- # [batch_size, sequence_length, num_buckets * num_heads]
- rel_pos_embeddings = self.relative_pos_embeddings(hidden_states)
- rel_pos_embeddings = rel_pos_embeddings.view(
- rel_pos_embeddings.shape[:2] + (self.num_buckets, self.num_attn_heads)
- )
- rel_pos_embeddings = rel_pos_embeddings.permute(0, 3, 1, 2)
- # [batch_size, num_heads, sequence_length, num_buckets]
- rel_pos_embeddings = rel_pos_embeddings.reshape(attn_weights.shape[:3] + (-1,))
- main_relative_position_buckets = main_relative_position_buckets.repeat(1, self.num_attn_heads, 1)
- # [batch_size * num_heads * sequence_length, sequence_length]
- main_relative_position_buckets = main_relative_position_buckets.view(
- -1, main_relative_position_buckets.shape[-1]
- )
- main_relative_position_buckets = main_relative_position_buckets.long()
- # [batch_size * num_heads * sequence_length, sequence_length]
- rel_pos_embeddings = rel_pos_embeddings.reshape(-1, rel_pos_embeddings.size(-1))
- main_relative_pos_embeddings = torch.gather(rel_pos_embeddings, dim=1, index=main_relative_position_buckets)
- main_relative_pos_embeddings = main_relative_pos_embeddings.view(batch_size, num_attn_heads, tgt_len, -1)
- return main_relative_pos_embeddings
- def get_predict_relative_pos_embeddings(
- self, hidden_states, attn_weights, position_ids, predict_relative_position_buckets
- ):
- # input hidden_states [batch_size, sequence_length, ngram, hidden_size]
- # input attn_weights [batch_size, ngram, num_heads, sequence_length, 2*sequence_length]
- # input position_ids [batch_size, sequence_length] or [1,1]
- # input predict_relative_position_buckets [batch_size, sequence_length, 2*sequence_length] or None
- batch_size, sequence_length = hidden_states.shape[0:2]
- if predict_relative_position_buckets is None:
- key_sequence_length = attn_weights.shape[-1]
- assert (
- position_ids[0][0] == key_sequence_length - 1
- ), "`position_ids` are incorrect. They should be of the format 1 2 3 4 5 ... (key_sequence_length - 1)"
- relative_positions = (
- torch.arange(0, key_sequence_length)
- .unsqueeze(0)
- .unsqueeze(0)
- .repeat(batch_size, sequence_length, 1)
- .to(position_ids.device)
- )
- relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1)
- predict_relative_position_buckets = compute_relative_buckets(
- self.num_buckets, self.relative_max_distance, relative_positions, False
- )
- # [batch_size, ngram, sequence_length, hidden_size]
- hidden_states = hidden_states.transpose(1, 2)
- rel_pos_embeddings = self.relative_pos_embeddings(hidden_states)
- # [batch_size, ngram, sequence_length, num_buckets, num_heads]
- rel_pos_embeddings = rel_pos_embeddings.view(
- hidden_states.shape[:-1] + (self.num_buckets, self.num_attn_heads)
- )
- rel_pos_embeddings = rel_pos_embeddings.permute(0, 2, 1, 4, 3)
- # [batch_size * ngram * sequence_length * num_heads, num_buckets]
- rel_pos_embeddings = rel_pos_embeddings.reshape(-1, self.num_buckets)
- # [ngram, batch_size, num_heads * sequence_length, -1]
- predict_relative_position_buckets = predict_relative_position_buckets.unsqueeze(0)
- predict_relative_position_buckets = predict_relative_position_buckets.repeat(
- self.ngram, 1, self.num_attn_heads, 1
- )
- # [ngram * batch_size * num_heads * sequence_length, -1]
- predict_relative_position_buckets = predict_relative_position_buckets.view(
- -1, predict_relative_position_buckets.size(-1)
- ).long()
- predict_relative_pos_embeddings = torch.gather(
- rel_pos_embeddings, dim=1, index=predict_relative_position_buckets
- )
- # [batch_size, gram, num_heads, sequence_length, -1]
- predict_relative_pos_embeddings = predict_relative_pos_embeddings.view(
- batch_size, self.ngram, self.num_attn_heads, sequence_length, -1
- )
- return predict_relative_pos_embeddings
- class ProphetNetEncoderLayer(nn.Module):
- """
- Encoder block for Prophetnet
- """
- def __init__(self, config: ProphetNetConfig):
- super().__init__()
- # 1st residual block
- self.self_attn = ProphetNetAttention(config, config.num_encoder_attention_heads)
- self.self_attn_layer_norm = LayerNorm(config.hidden_size)
- # 2nd residual block
- self.feed_forward = ProphetNetFeedForward(config, config.encoder_ffn_dim)
- self.feed_forward_layer_norm = LayerNorm(config.hidden_size)
- def forward(
- self,
- hidden_states,
- attention_mask,
- layer_head_mask,
- output_attentions: bool = False,
- ):
- # 1st residual block
- attention_output, attn_weights, _ = self.self_attn(
- hidden_states=hidden_states,
- attention_mask=attention_mask,
- layer_head_mask=layer_head_mask,
- output_attentions=output_attentions,
- )
- hidden_states = self.self_attn_layer_norm(attention_output + hidden_states)
- # 2nd residual block
- feed_forward_output = self.feed_forward(hidden_states)
- hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states)
- outputs = (hidden_states,)
- if output_attentions:
- outputs += (attn_weights,)
- return outputs
- class ProphetNetDecoderLayer(nn.Module):
- """
- Decoder block for Prophetnet
- """
- def __init__(self, config: ProphetNetConfig):
- super().__init__()
- # 1st residual block
- self.self_attn = ProphetNetNgramSelfAttention(config)
- self.self_attn_layer_norm = LayerNorm(config.hidden_size)
- # 2nd residual block
- if config.add_cross_attention:
- self.cross_attn = ProphetNetAttention(config, config.num_decoder_attention_heads)
- self.cross_attn_layer_norm = LayerNorm(config.hidden_size)
- # 3rd residual block
- self.feed_forward = ProphetNetFeedForward(config, config.decoder_ffn_dim)
- self.feed_forward_layer_norm = LayerNorm(config.hidden_size)
- def forward(
- self,
- hidden_states,
- attention_mask=None,
- encoder_hidden_states=None,
- encoder_attn_mask=None,
- layer_head_mask=None,
- cross_attn_layer_head_mask=None,
- extended_predict_attention_mask=None,
- main_relative_position_buckets=None,
- predict_relative_position_buckets=None,
- position_ids=None,
- past_key_value=None,
- use_cache: bool = True,
- output_attentions: bool = False,
- ):
- # 1st residual block
- # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
- self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
- ngram_attention_output, self_attn_weights, self_attn_weights_ngram, present_key_value = self.self_attn(
- hidden_states=hidden_states,
- past_key_value=self_attn_past_key_value,
- attention_mask=attention_mask,
- layer_head_mask=layer_head_mask,
- extended_predict_attention_mask=extended_predict_attention_mask,
- main_relative_position_buckets=main_relative_position_buckets,
- predict_relative_position_buckets=predict_relative_position_buckets,
- position_ids=position_ids,
- )
- hidden_states = self.self_attn_layer_norm(hidden_states + ngram_attention_output)
- # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
- cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
- cross_attn_weights = None
- if encoder_hidden_states is not None:
- # 2nd residual block
- attention_output, cross_attn_weights, cross_attn_present_key_value = self.cross_attn(
- hidden_states=hidden_states,
- key_value_states=encoder_hidden_states,
- attention_mask=encoder_attn_mask,
- layer_head_mask=cross_attn_layer_head_mask,
- past_key_value=cross_attn_past_key_value,
- output_attentions=output_attentions,
- )
- hidden_states = self.cross_attn_layer_norm(attention_output + hidden_states)
- # add cross-attn to positions 3,4 of present_key_value tuple
- present_key_value = present_key_value + cross_attn_present_key_value
- # 3rd residual block
- feed_forward_output = self.feed_forward(hidden_states)
- hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states)
- outputs = (hidden_states,)
- if output_attentions:
- outputs += (self_attn_weights, self_attn_weights_ngram, cross_attn_weights)
- if use_cache:
- outputs += (present_key_value,)
- return outputs
- @add_start_docstrings(
- "The standalone encoder part of the ProphetNetModel.",
- PROPHETNET_START_DOCSTRING,
- )
- class ProphetNetEncoder(ProphetNetPreTrainedModel):
- r"""
- word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*):
- The word embedding parameters. This can be used to initialize [`ProphetNetEncoder`] with pre-defined word
- embeddings instead of randomly initialized word embeddings.
- """
- def __init__(self, config: ProphetNetConfig, word_embeddings: nn.Embedding = None):
- super().__init__(config)
- self.word_embeddings = (
- word_embeddings
- if word_embeddings is not None
- else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
- )
- self.position_embeddings = ProphetNetPositionalEmbeddings(config)
- self.embeddings_layer_norm = LayerNorm(config.hidden_size)
- self.layers = nn.ModuleList([ProphetNetEncoderLayer(config) for _ in range(config.num_encoder_layers)])
- self.gradient_checkpointing = False
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.word_embeddings
- def set_input_embeddings(self, value):
- self.word_embeddings = value
- @add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutput]:
- r"""
- Returns:
- Example:
- ```python
- >>> from transformers import AutoTokenizer, ProphetNetEncoder
- >>> import torch
- >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased")
- >>> model = ProphetNetEncoder.from_pretrained("patrickvonplaten/prophetnet-large-uncased-standalone")
- >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
- >>> outputs = model(**inputs)
- >>> last_hidden_states = outputs.last_hidden_state
- ```"""
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if input_ids is None and inputs_embeds is None:
- raise ValueError("Either input_ids or inputs_embeds has to be passed.")
- elif input_ids is not None and inputs_embeds is not None:
- raise ValueError("Make sure to only pass input_ids or inputs_embeds.")
- elif input_ids is not None and inputs_embeds is None:
- inputs_embeds = self.word_embeddings(input_ids)
- # prepare attention mask
- if attention_mask is not None:
- extended_attention_mask = (
- 1.0 - attention_mask[:, None, None, :].repeat(1, self.config.num_encoder_attention_heads, 1, 1)
- ) * torch.finfo(self.dtype).min
- extended_attention_mask = extended_attention_mask.to(inputs_embeds.dtype)
- else:
- extended_attention_mask = None
- position_embeddings, position_ids = self.position_embeddings(inputs_embeds.shape[:2], inputs_embeds.device)
- hidden_states = inputs_embeds + position_embeddings
- hidden_states = self.embeddings_layer_norm(hidden_states)
- hidden_states = nn.functional.dropout(hidden_states, p=self.config.dropout, training=self.training)
- encoder_hidden_states = () if output_hidden_states else None
- all_attentions = () if output_attentions else None
- # check if head_mask has a correct number of layers specified if desired
- if head_mask is not None:
- assert head_mask.size()[0] == (
- len(self.layers)
- ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
- for idx, encoder_layer in enumerate(self.layers):
- if output_hidden_states:
- encoder_hidden_states = encoder_hidden_states + (hidden_states,)
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- encoder_layer.__call__,
- hidden_states,
- extended_attention_mask,
- (head_mask[idx] if head_mask is not None else None),
- output_attentions,
- )
- else:
- layer_outputs = encoder_layer(
- hidden_states,
- attention_mask=extended_attention_mask,
- layer_head_mask=(head_mask[idx] if head_mask is not None else None),
- output_attentions=output_attentions,
- )
- hidden_states = layer_outputs[0]
- if output_attentions:
- all_attentions = all_attentions + (layer_outputs[1],)
- if output_hidden_states:
- encoder_hidden_states = encoder_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(v for v in [hidden_states, encoder_hidden_states, all_attentions] if v is not None)
- return BaseModelOutput(
- last_hidden_state=hidden_states, hidden_states=encoder_hidden_states, attentions=all_attentions
- )
- @add_start_docstrings(
- "The standalone decoder part of the ProphetNetModel.",
- PROPHETNET_START_DOCSTRING,
- )
- class ProphetNetDecoder(ProphetNetPreTrainedModel):
- r"""
- word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*):
- The word embedding parameters. This can be used to initialize [`ProphetNetEncoder`] with pre-defined word
- embeddings instead of randomly initialized word embeddings.
- """
- def __init__(self, config: ProphetNetConfig, word_embeddings: Optional[nn.Embedding] = None):
- super().__init__(config)
- self.ngram = config.ngram
- self.num_buckets = config.num_buckets
- self.relative_max_distance = config.relative_max_distance
- self.dropout = config.dropout
- self.max_target_positions = config.max_position_embeddings
- self.word_embeddings = (
- word_embeddings
- if word_embeddings is not None
- else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
- )
- self.position_embeddings = ProphetNetPositionalEmbeddings(config)
- self.ngram_embeddings = nn.Embedding(self.ngram, config.hidden_size, None)
- self.layers = nn.ModuleList([ProphetNetDecoderLayer(config) for _ in range(config.num_decoder_layers)])
- self.embeddings_layer_norm = LayerNorm(config.hidden_size)
- self.gradient_checkpointing = False
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.word_embeddings
- def set_input_embeddings(self, value):
- self.word_embeddings = value
- @add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=ProphetNetDecoderModelOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- encoder_hidden_states: Optional[torch.Tensor] = None,
- encoder_attention_mask: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- cross_attn_head_mask: Optional[torch.Tensor] = None,
- past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, ProphetNetDecoderModelOutput]:
- r"""
- encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
- the model is configured as a decoder.
- encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
- the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
- Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
- `past_key_values`).
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- Returns:
- Example:
- ```python
- >>> from transformers import AutoTokenizer, ProphetNetDecoder
- >>> import torch
- >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased")
- >>> model = ProphetNetDecoder.from_pretrained("microsoft/prophetnet-large-uncased", add_cross_attention=False)
- >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
- >>> outputs = model(**inputs)
- >>> last_hidden_states = outputs.last_hidden_state
- ```"""
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if input_ids is None and inputs_embeds is None:
- raise ValueError("Either `decoder_input_ids` or `decoder_inputs_embeds` has to be passed.")
- elif input_ids is not None and inputs_embeds is not None:
- raise ValueError("Make sure to only pass `decoder_input_ids` or `decoder_inputs_embeds`.")
- elif input_ids is not None and inputs_embeds is None:
- inputs_embeds = self.word_embeddings(input_ids)
- batch_size, sequence_length = inputs_embeds.shape[:2]
- main_stream_pos_embed, position_ids = self.position_embeddings(
- (batch_size, sequence_length),
- device=inputs_embeds.device,
- past_key_values=past_key_values,
- )
- if past_key_values is not None:
- main_relative_position_buckets, predict_relative_position_buckets = None, None
- else:
- (
- main_relative_position_buckets,
- predict_relative_position_buckets,
- ) = self.compute_buffered_relative_buckets(position_ids)
- predicting_stream_pos_embed = self.position_embeddings._forward(position_ids + 1)
- # add position embeddings
- hidden_states = inputs_embeds + main_stream_pos_embed
- ngram_embeddings = self.ngram_embeddings.weight
- # prepare attention mask
- if past_key_values is not None:
- assert (
- hidden_states.size(1) == 1
- ), "At the moment `use_cache` is only supported for `decoder_input_ids` of length 1"
- ngram_hidden_states = [
- (ngram_embeddings[ngram - 1] + predicting_stream_pos_embed).repeat(batch_size, 1, 1)
- for ngram in range(self.ngram)
- ]
- extended_attention_mask = None
- extended_predict_attention_mask = None
- else:
- ngram_hidden_states = [
- (ngram_embeddings[ngram - 1] + predicting_stream_pos_embed) for ngram in range(self.ngram)
- ]
- extended_attention_mask = self.prepare_attention_mask(hidden_states, attention_mask)
- extended_predict_attention_mask = self.prepare_predict_attention_mask(hidden_states, attention_mask)
- # prepare encoder attention mask
- if encoder_attention_mask is not None:
- extended_encoder_attention_mask = (
- 1.0 - encoder_attention_mask[:, None, None, :].repeat(1, self.config.num_decoder_attention_heads, 1, 1)
- ) * torch.finfo(self.dtype).min
- extended_encoder_attention_mask = extended_encoder_attention_mask.to(inputs_embeds.dtype)
- else:
- extended_encoder_attention_mask = None
- hidden_states = torch.cat([hidden_states] + ngram_hidden_states, 1)
- if self.embeddings_layer_norm:
- hidden_states = self.embeddings_layer_norm(hidden_states)
- hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
- # init attentions, hidden_states and cache with empty tuples
- all_main_stream_hidden_states = () if output_hidden_states else None
- all_ngram_stream_hidden_states = () if output_hidden_states and self.config.ngram > 0 else None
- all_main_stream_attns = () if output_attentions else None
- all_ngram_stream_attns = () if output_attentions else None
- all_cross_attns = () if output_attentions and self.config.add_cross_attention else None
- if self.gradient_checkpointing and self.training:
- if use_cache:
- logger.warning_once(
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
- )
- use_cache = False
- present_key_values = () if use_cache else None
- # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
- for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
- if attn_mask is not None:
- assert attn_mask.size()[0] == (len(self.layers)), (
- f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
- f" {head_mask.size()[0]}."
- )
- for idx, decoder_layer in enumerate(self.layers):
- if output_hidden_states:
- # grad cannot be kept because tensor is sliced
- all_main_stream_hidden_states += (hidden_states[:, :sequence_length],)
- if self.config.ngram > 0:
- all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],)
- past_key_value = past_key_values[idx] if past_key_values is not None else None
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- decoder_layer.__call__,
- hidden_states,
- extended_attention_mask,
- encoder_hidden_states,
- extended_encoder_attention_mask,
- (head_mask[idx] if head_mask is not None else None),
- (cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None),
- extended_predict_attention_mask,
- main_relative_position_buckets,
- predict_relative_position_buckets,
- position_ids,
- None,
- use_cache,
- output_attentions,
- )
- else:
- layer_outputs = decoder_layer(
- hidden_states,
- attention_mask=extended_attention_mask,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attn_mask=extended_encoder_attention_mask,
- layer_head_mask=(head_mask[idx] if head_mask is not None else None),
- cross_attn_layer_head_mask=(
- cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
- ),
- extended_predict_attention_mask=extended_predict_attention_mask,
- main_relative_position_buckets=main_relative_position_buckets,
- predict_relative_position_buckets=predict_relative_position_buckets,
- position_ids=position_ids,
- past_key_value=past_key_value,
- use_cache=use_cache,
- output_attentions=output_attentions,
- )
- hidden_states = layer_outputs[0]
- if use_cache:
- present_key_values += (layer_outputs[4 if output_attentions else 1],)
- if output_attentions:
- all_main_stream_attns += (layer_outputs[1],)
- all_ngram_stream_attns += (layer_outputs[2],)
- if self.config.add_cross_attention:
- all_cross_attns += (layer_outputs[3],)
- if output_hidden_states:
- all_main_stream_hidden_states += (hidden_states[:, :sequence_length],)
- if self.config.ngram > 0:
- all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],)
- # split last_hidden_state for return
- last_hidden_state = hidden_states[:, :sequence_length]
- last_hidden_state_ngram = hidden_states[:, sequence_length:] if self.config.ngram > 0 else None
- if not return_dict:
- return tuple(
- v
- for v in [
- last_hidden_state,
- last_hidden_state_ngram,
- present_key_values,
- all_main_stream_hidden_states,
- all_ngram_stream_hidden_states,
- all_main_stream_attns,
- all_ngram_stream_attns,
- all_cross_attns,
- ]
- if v is not None
- )
- return ProphetNetDecoderModelOutput(
- last_hidden_state=last_hidden_state,
- last_hidden_state_ngram=last_hidden_state_ngram,
- past_key_values=present_key_values,
- hidden_states=all_main_stream_hidden_states,
- hidden_states_ngram=all_ngram_stream_hidden_states,
- attentions=all_main_stream_attns,
- ngram_attentions=all_ngram_stream_attns,
- cross_attentions=all_cross_attns,
- )
- def compute_buffered_relative_buckets(self, position_ids):
- batch_size, sequence_length = position_ids.shape
- position_ids = torch.arange(1, self.max_target_positions).to(position_ids.device).repeat(1, 1)
- main_relative_buckets, predict_relative_buckets = compute_all_stream_relative_buckets(
- self.num_buckets, self.relative_max_distance, position_ids
- )
- # buffer relative buckets
- main_relative_buckets = main_relative_buckets[:, :sequence_length, :sequence_length].repeat(batch_size, 1, 1)
- predict_relative_buckets = torch.cat(
- [
- predict_relative_buckets[:, :sequence_length, :sequence_length],
- predict_relative_buckets[
- :, :sequence_length, self.max_target_positions : self.max_target_positions + sequence_length
- ],
- ],
- 2,
- ).repeat(batch_size, 1, 1)
- return main_relative_buckets, predict_relative_buckets
- def prepare_attention_mask(self, hidden_states, attention_mask):
- batch_size, seq_length = hidden_states.shape[:2]
- # get causal mask
- causal_mask = torch.full(
- (seq_length, seq_length),
- torch.finfo(hidden_states.dtype).min,
- dtype=hidden_states.dtype,
- device=hidden_states.device,
- )
- causal_mask = torch.triu(causal_mask, 1)
- extended_causal_mask = causal_mask[:seq_length, :seq_length][None, None, :, :].expand(
- (batch_size, self.config.num_decoder_attention_heads) + causal_mask.shape
- )
- # add usual attention mask
- if attention_mask is not None:
- extended_attention_mask = (1.0 - attention_mask[:, None, None, :]) * torch.finfo(self.dtype).min
- extended_attention_mask = extended_causal_mask + extended_attention_mask
- else:
- extended_attention_mask = extended_causal_mask
- return extended_attention_mask.to(hidden_states.dtype)
- def prepare_predict_attention_mask(self, hidden_states, attention_mask):
- batch_size, seq_length = hidden_states.shape[:2]
- # get causal mask
- predict_causal_mask = ngram_attention_bias(
- self.max_target_positions, self.ngram, hidden_states.device, hidden_states.dtype
- )
- predict_causal_mask = torch.cat(
- [
- predict_causal_mask[:, :seq_length, :seq_length],
- predict_causal_mask[
- :, :seq_length, self.max_target_positions : self.max_target_positions + seq_length
- ],
- ],
- dim=-1,
- )
- extended_predict_causal_mask = predict_causal_mask[None, None, :, :, :].expand(
- (batch_size, self.config.num_decoder_attention_heads) + predict_causal_mask.shape
- )
- # add usual attention mask
- if attention_mask is not None:
- extended_attention_mask = (1.0 - attention_mask[:, None, None, None, :]) * torch.finfo(self.dtype).min
- extended_attention_mask = extended_attention_mask.expand(
- (batch_size, self.config.num_decoder_attention_heads, self.ngram, seq_length, seq_length)
- )
- # predicted stream attention_mask should always be 0
- extended_attention_mask = torch.cat(
- [extended_attention_mask, torch.zeros_like(extended_attention_mask)], dim=-1
- )
- extended_predict_attention_mask = extended_predict_causal_mask + extended_attention_mask
- else:
- extended_predict_attention_mask = extended_predict_causal_mask
- return extended_predict_attention_mask.to(hidden_states.dtype)
- @add_start_docstrings(
- "The bare ProphetNet Model outputting raw hidden-states without any specific head on top.",
- PROPHETNET_START_DOCSTRING,
- )
- class ProphetNetModel(ProphetNetPreTrainedModel):
- _tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight"]
- def __init__(self, config: ProphetNetConfig):
- super().__init__(config)
- self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
- encoder_config = copy.deepcopy(config)
- encoder_config.is_encoder_decoder = False
- encoder_config.use_cache = False
- self.encoder = ProphetNetEncoder(encoder_config, self.word_embeddings)
- decoder_config = copy.deepcopy(config)
- decoder_config.is_decoder = True
- decoder_config.is_encoder_decoder = False
- self.decoder = ProphetNetDecoder(decoder_config, self.word_embeddings)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.word_embeddings
- def set_input_embeddings(self, value):
- self.word_embeddings = value
- self.encoder.word_embeddings = self.word_embeddings
- self.decoder.word_embeddings = self.word_embeddings
- def _tie_weights(self):
- if self.config.tie_word_embeddings:
- self._tie_or_clone_weights(self.encoder.word_embeddings, self.word_embeddings)
- self._tie_or_clone_weights(self.decoder.word_embeddings, self.word_embeddings)
- def get_encoder(self):
- return self.encoder
- def get_decoder(self):
- return self.decoder
- @add_start_docstrings_to_model_forward(PROPHETNET_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=ProphetNetSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- decoder_input_ids: Optional[torch.Tensor] = None,
- decoder_attention_mask: Optional[torch.BoolTensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- decoder_head_mask: Optional[torch.Tensor] = None,
- cross_attn_head_mask: Optional[torch.Tensor] = None,
- encoder_outputs: Optional[Tuple] = None,
- past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- decoder_inputs_embeds: Optional[torch.Tensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, ProphetNetSeq2SeqModelOutput]:
- r"""
- Returns:
- Example:
- ```python
- >>> from transformers import AutoTokenizer, ProphetNetModel
- >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased")
- >>> model = ProphetNetModel.from_pretrained("microsoft/prophetnet-large-uncased")
- >>> input_ids = tokenizer(
- ... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
- ... ).input_ids # Batch size 1
- >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
- >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
- >>> last_hidden_states = outputs.last_hidden_state # main stream hidden states
- >>> last_hidden_states_ngram = outputs.last_hidden_state_ngram # predict hidden states
- ```"""
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if encoder_outputs is None:
- encoder_outputs = self.encoder(
- input_ids=input_ids,
- attention_mask=attention_mask,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- # decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn)
- decoder_outputs = self.decoder(
- input_ids=decoder_input_ids,
- attention_mask=decoder_attention_mask,
- encoder_hidden_states=encoder_outputs[0],
- encoder_attention_mask=attention_mask,
- head_mask=decoder_head_mask,
- cross_attn_head_mask=cross_attn_head_mask,
- past_key_values=past_key_values,
- inputs_embeds=decoder_inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- use_cache=use_cache,
- return_dict=return_dict,
- )
- if not return_dict:
- return decoder_outputs + encoder_outputs
- return ProphetNetSeq2SeqModelOutput(
- last_hidden_state=decoder_outputs.last_hidden_state,
- last_hidden_state_ngram=decoder_outputs.last_hidden_state_ngram,
- past_key_values=decoder_outputs.past_key_values,
- decoder_hidden_states=decoder_outputs.hidden_states,
- decoder_ngram_hidden_states=decoder_outputs.hidden_states_ngram,
- decoder_attentions=decoder_outputs.attentions,
- decoder_ngram_attentions=decoder_outputs.ngram_attentions,
- cross_attentions=decoder_outputs.cross_attentions,
- encoder_last_hidden_state=encoder_outputs.last_hidden_state,
- encoder_hidden_states=encoder_outputs.hidden_states,
- encoder_attentions=encoder_outputs.attentions,
- )
- @add_start_docstrings(
- "The ProphetNet Model with a language modeling head. Can be used for sequence generation tasks.",
- PROPHETNET_START_DOCSTRING,
- )
- class ProphetNetForConditionalGeneration(ProphetNetPreTrainedModel, GenerationMixin):
- _tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight", "lm_head.weight"]
- def __init__(self, config: ProphetNetConfig):
- super().__init__(config)
- self.prophetnet = ProphetNetModel(config)
- self.padding_idx = config.pad_token_id
- self.disable_ngram_loss = config.disable_ngram_loss
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
- # Initialize weights and apply final processing
- self.post_init()
- def get_output_embeddings(self):
- return self.lm_head
- def set_output_embeddings(self, new_embeddings):
- self.lm_head = new_embeddings
- def _tie_weights(self):
- if self.config.tie_word_embeddings:
- self._tie_or_clone_weights(self.prophetnet.word_embeddings, self.lm_head)
- def get_input_embeddings(self):
- return self.prophetnet.word_embeddings
- @add_start_docstrings_to_model_forward(PROPHETNET_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=ProphetNetSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- decoder_input_ids: Optional[torch.Tensor] = None,
- decoder_attention_mask: Optional[torch.BoolTensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- decoder_head_mask: Optional[torch.Tensor] = None,
- cross_attn_head_mask: Optional[torch.Tensor] = None,
- encoder_outputs: Optional[torch.Tensor] = None,
- past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- decoder_inputs_embeds: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, ProphetNetSeq2SeqLMOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
- config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
- labels in `[0, ..., config.vocab_size]`
- Returns:
- Example:
- ```python
- >>> from transformers import AutoTokenizer, ProphetNetForConditionalGeneration
- >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased")
- >>> model = ProphetNetForConditionalGeneration.from_pretrained("microsoft/prophetnet-large-uncased")
- >>> input_ids = tokenizer(
- ... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
- ... ).input_ids # Batch size 1
- >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
- >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
- >>> logits_next_token = outputs.logits # logits to predict next token as usual
- >>> logits_ngram_next_tokens = outputs.logits_ngram # logits to predict 2nd, 3rd, ... next tokens
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
- # get decoder inputs from shifting lm labels to the right
- decoder_input_ids = self._shift_right(labels)
- outputs = self.prophetnet(
- input_ids=input_ids,
- attention_mask=attention_mask,
- decoder_input_ids=decoder_input_ids,
- decoder_attention_mask=decoder_attention_mask,
- head_mask=head_mask,
- decoder_head_mask=decoder_head_mask,
- cross_attn_head_mask=cross_attn_head_mask,
- encoder_outputs=encoder_outputs,
- past_key_values=past_key_values,
- inputs_embeds=inputs_embeds,
- decoder_inputs_embeds=decoder_inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- batch_size, sequence_length = (
- decoder_input_ids.shape if decoder_input_ids is not None else decoder_inputs_embeds.shape[:2]
- )
- predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1)
- predict_logits = self.lm_head(predicting_streams)
- logits = predict_logits[:, 0]
- logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None
- # To use .view in loss computation, make sure that logits is contiguous.
- if not logits.is_contiguous():
- logits = logits.contiguous()
- loss = None
- if labels is not None:
- loss = self._compute_loss(predict_logits, labels)
- if not return_dict:
- all_logits = tuple(v for v in [logits, logits_ngram] if v is not None)
- return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:]
- else:
- return ProphetNetSeq2SeqLMOutput(
- loss=loss,
- logits=logits,
- logits_ngram=logits_ngram,
- past_key_values=outputs.past_key_values,
- decoder_hidden_states=outputs.decoder_hidden_states,
- decoder_ngram_hidden_states=outputs.decoder_ngram_hidden_states,
- decoder_attentions=outputs.decoder_attentions,
- decoder_ngram_attentions=outputs.decoder_ngram_attentions,
- cross_attentions=outputs.cross_attentions,
- encoder_last_hidden_state=outputs.encoder_last_hidden_state,
- encoder_hidden_states=outputs.encoder_hidden_states,
- encoder_attentions=outputs.encoder_attentions,
- )
- def _compute_loss(self, logits, labels, ignore_index=-100):
- expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index)
- for i in range(self.config.ngram):
- if i > 0 and self.disable_ngram_loss:
- break
- expend_targets[i, :, :] = labels
- logits = logits.transpose(0, 1).contiguous()
- lprobs = nn.functional.log_softmax(
- logits.view(-1, logits.size(-1)),
- dim=-1,
- dtype=torch.float32,
- )
- loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean")
- if self.config.eps > 0.0:
- smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
- non_masked_tokens = expend_targets.ne(ignore_index).view(-1)
- smooth_loss = smooth_loss[non_masked_tokens]
- smooth_loss = smooth_loss.mean()
- eps_i = self.config.eps / lprobs.size(-1)
- loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss
- return loss
- def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
- return self._shift_right(labels)
- @staticmethod
- # Copied from transformers.models.bart.modeling_bart.BartForConditionalGeneration._reorder_cache
- def _reorder_cache(past_key_values, beam_idx):
- reordered_past = ()
- for layer_past in past_key_values:
- # cached cross_attention states don't have to be reordered -> they are always the same
- reordered_past += (
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
- + layer_past[2:],
- )
- return reordered_past
- def get_encoder(self):
- return self.prophetnet.encoder
- def get_decoder(self):
- return self.prophetnet.decoder
- @add_start_docstrings(
- "The standalone decoder part of the ProphetNetModel with a lm head on top. The model can be used for causal"
- " language modeling.",
- PROPHETNET_START_DOCSTRING,
- )
- class ProphetNetForCausalLM(ProphetNetPreTrainedModel, GenerationMixin):
- _tied_weights_keys = [
- "prophetnet.word_embeddings.weight",
- "prophetnet.decoder.word_embeddings.weight",
- "lm_head.weight",
- ]
- def __init__(self, config: ProphetNetConfig):
- # set config for CLM
- config = copy.deepcopy(config)
- config.is_decoder = True
- config.is_encoder_decoder = False
- super().__init__(config)
- self.prophetnet = ProphetNetDecoderWrapper(config)
- self.padding_idx = config.pad_token_id
- self.disable_ngram_loss = config.disable_ngram_loss
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.prophetnet.decoder.word_embeddings
- def set_input_embeddings(self, value):
- self.prophetnet.decoder.word_embeddings = value
- def get_output_embeddings(self):
- return self.lm_head
- def set_output_embeddings(self, new_embeddings):
- self.lm_head = new_embeddings
- def _tie_weights(self):
- if self.config.tie_word_embeddings:
- self._tie_or_clone_weights(self.prophetnet.decoder.word_embeddings, self.lm_head)
- def set_decoder(self, decoder):
- self.prophetnet.decoder = decoder
- def get_decoder(self):
- return self.prophetnet.decoder
- @add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=ProphetNetDecoderLMOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- encoder_hidden_states: Optional[torch.Tensor] = None,
- encoder_attention_mask: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- cross_attn_head_mask: Optional[torch.Tensor] = None,
- past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, ProphetNetDecoderLMOutput]:
- r"""
- encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
- the model is configured as a decoder.
- encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
- the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
- Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
- Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding.
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
- `past_key_values`).
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
- `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
- ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`
- Returns:
- Example:
- ```python
- >>> from transformers import AutoTokenizer, ProphetNetForCausalLM
- >>> import torch
- >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased")
- >>> model = ProphetNetForCausalLM.from_pretrained("microsoft/prophetnet-large-uncased")
- >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
- >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
- >>> outputs = model(**inputs)
- >>> logits = outputs.logits
- >>> # Model can also be used with EncoderDecoder framework
- >>> from transformers import BertTokenizer, EncoderDecoderModel, AutoTokenizer
- >>> import torch
- >>> tokenizer_enc = BertTokenizer.from_pretrained("google-bert/bert-large-uncased")
- >>> tokenizer_dec = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased")
- >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained(
- ... "google-bert/bert-large-uncased", "microsoft/prophetnet-large-uncased"
- ... )
- >>> ARTICLE = (
- ... "the us state department said wednesday it had received no "
- ... "formal word from bolivia that it was expelling the us ambassador there "
- ... "but said the charges made against him are `` baseless ."
- ... )
- >>> input_ids = tokenizer_enc(ARTICLE, return_tensors="pt").input_ids
- >>> labels = tokenizer_dec(
- ... "us rejects charges against its ambassador in bolivia", return_tensors="pt"
- ... ).input_ids
- >>> outputs = model(input_ids=input_ids, decoder_input_ids=labels[:, :-1], labels=labels[:, 1:])
- >>> loss = outputs.loss
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- # decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn)
- outputs = self.prophetnet.decoder(
- input_ids=input_ids,
- attention_mask=attention_mask,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- head_mask=head_mask,
- cross_attn_head_mask=cross_attn_head_mask,
- past_key_values=past_key_values,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- batch_size, sequence_length = input_ids.shape if input_ids is not None else inputs_embeds.shape[:2]
- predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1)
- predict_logits = self.lm_head(predicting_streams)
- logits = predict_logits[:, 0]
- logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None
- loss = None
- if labels is not None:
- loss = self._compute_loss(predict_logits, labels)
- if not return_dict:
- all_logits = tuple(v for v in [logits, logits_ngram] if v is not None)
- return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:]
- else:
- return ProphetNetDecoderLMOutput(
- loss=loss,
- logits=logits,
- logits_ngram=logits_ngram,
- past_key_values=outputs.past_key_values,
- hidden_states=outputs.hidden_states,
- hidden_states_ngram=outputs.hidden_states_ngram,
- attentions=outputs.attentions,
- ngram_attentions=outputs.ngram_attentions,
- cross_attentions=outputs.cross_attentions,
- )
- def _compute_loss(self, logits, labels, ignore_index=-100):
- expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index)
- for i in range(self.config.ngram):
- if i > 0 and self.disable_ngram_loss:
- break
- expend_targets[i, :, :] = labels
- logits = logits.transpose(0, 1).contiguous()
- lprobs = nn.functional.log_softmax(
- logits.view(-1, logits.size(-1)),
- dim=-1,
- dtype=torch.float32,
- )
- loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean")
- if self.config.eps > 0.0:
- smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
- non_masked_tokens = expend_targets.ne(ignore_index).view(-1)
- smooth_loss = smooth_loss[non_masked_tokens]
- smooth_loss = smooth_loss.mean()
- eps_i = self.config.eps / lprobs.size(-1)
- loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss
- return loss
- def prepare_inputs_for_generation(
- self,
- input_ids,
- past_key_values=None,
- attention_mask=None,
- head_mask=None,
- use_cache=None,
- **kwargs,
- ):
- # Overwritten -- our tests complain if we use GenerationMixin.prepare_inputs_for_generation
- # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
- if attention_mask is None:
- attention_mask = input_ids.new_ones(input_ids.shape)
- if past_key_values:
- input_ids = input_ids[:, -1:]
- # first step, decoder_cached_states are empty
- return {
- "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
- "attention_mask": attention_mask,
- "head_mask": head_mask,
- "past_key_values": past_key_values,
- "use_cache": use_cache,
- }
- @staticmethod
- # Copied from transformers.models.bart.modeling_bart.BartForCausalLM._reorder_cache
- def _reorder_cache(past_key_values, beam_idx):
- reordered_past = ()
- for layer_past in past_key_values:
- reordered_past += (
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
- )
- return reordered_past
- class ProphetNetDecoderWrapper(ProphetNetPreTrainedModel):
- """
- This is a wrapper class, so that [`ProphetNetForCausalLM`] can correctly be loaded from pretrained prophetnet
- classes.
- """
- def __init__(self, config: ProphetNetConfig):
- super().__init__(config)
- self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
- self.decoder = ProphetNetDecoder(config, word_embeddings=self.word_embeddings)
- # Initialize weights and apply final processing
- self.post_init()
- def _tie_weights(self):
- self._tie_or_clone_weights(self.word_embeddings, self.decoder.get_input_embeddings())
- def forward(self, *args, **kwargs):
- return self.decoder(*args, **kwargs)
|