| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504 |
- # coding=utf-8
- # Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import collections
- import os
- import unicodedata
- from typing import Iterable, List, Optional, Tuple
- from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
- from ...utils import logging
- logger = logging.get_logger(__name__)
- VOCAB_FILES_NAMES = {"vocab_file": "prophetnet.tokenizer"}
- # Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
- def whitespace_tokenize(text):
- """Runs basic whitespace cleaning and splitting on a piece of text."""
- text = text.strip()
- if not text:
- return []
- tokens = text.split()
- return tokens
- # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
- class BasicTokenizer:
- """
- Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
- Args:
- do_lower_case (`bool`, *optional*, defaults to `True`):
- Whether or not to lowercase the input when tokenizing.
- never_split (`Iterable`, *optional*):
- Collection of tokens which will never be split during tokenization. Only has an effect when
- `do_basic_tokenize=True`
- tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
- Whether or not to tokenize Chinese characters.
- This should likely be deactivated for Japanese (see this
- [issue](https://github.com/huggingface/transformers/issues/328)).
- strip_accents (`bool`, *optional*):
- Whether or not to strip all accents. If this option is not specified, then it will be determined by the
- value for `lowercase` (as in the original BERT).
- do_split_on_punc (`bool`, *optional*, defaults to `True`):
- In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
- the full context of the words, such as contractions.
- """
- def __init__(
- self,
- do_lower_case=True,
- never_split=None,
- tokenize_chinese_chars=True,
- strip_accents=None,
- do_split_on_punc=True,
- ):
- if never_split is None:
- never_split = []
- self.do_lower_case = do_lower_case
- self.never_split = set(never_split)
- self.tokenize_chinese_chars = tokenize_chinese_chars
- self.strip_accents = strip_accents
- self.do_split_on_punc = do_split_on_punc
- def tokenize(self, text, never_split=None):
- """
- Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
- Args:
- never_split (`List[str]`, *optional*)
- Kept for backward compatibility purposes. Now implemented directly at the base class level (see
- [`PreTrainedTokenizer.tokenize`]) List of token not to split.
- """
- # union() returns a new set by concatenating the two sets.
- never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
- text = self._clean_text(text)
- # This was added on November 1st, 2018 for the multilingual and Chinese
- # models. This is also applied to the English models now, but it doesn't
- # matter since the English models were not trained on any Chinese data
- # and generally don't have any Chinese data in them (there are Chinese
- # characters in the vocabulary because Wikipedia does have some Chinese
- # words in the English Wikipedia.).
- if self.tokenize_chinese_chars:
- text = self._tokenize_chinese_chars(text)
- # prevents treating the same character with different unicode codepoints as different characters
- unicode_normalized_text = unicodedata.normalize("NFC", text)
- orig_tokens = whitespace_tokenize(unicode_normalized_text)
- split_tokens = []
- for token in orig_tokens:
- if token not in never_split:
- if self.do_lower_case:
- token = token.lower()
- if self.strip_accents is not False:
- token = self._run_strip_accents(token)
- elif self.strip_accents:
- token = self._run_strip_accents(token)
- split_tokens.extend(self._run_split_on_punc(token, never_split))
- output_tokens = whitespace_tokenize(" ".join(split_tokens))
- return output_tokens
- def _run_strip_accents(self, text):
- """Strips accents from a piece of text."""
- text = unicodedata.normalize("NFD", text)
- output = []
- for char in text:
- cat = unicodedata.category(char)
- if cat == "Mn":
- continue
- output.append(char)
- return "".join(output)
- def _run_split_on_punc(self, text, never_split=None):
- """Splits punctuation on a piece of text."""
- if not self.do_split_on_punc or (never_split is not None and text in never_split):
- return [text]
- chars = list(text)
- i = 0
- start_new_word = True
- output = []
- while i < len(chars):
- char = chars[i]
- if _is_punctuation(char):
- output.append([char])
- start_new_word = True
- else:
- if start_new_word:
- output.append([])
- start_new_word = False
- output[-1].append(char)
- i += 1
- return ["".join(x) for x in output]
- def _tokenize_chinese_chars(self, text):
- """Adds whitespace around any CJK character."""
- output = []
- for char in text:
- cp = ord(char)
- if self._is_chinese_char(cp):
- output.append(" ")
- output.append(char)
- output.append(" ")
- else:
- output.append(char)
- return "".join(output)
- def _is_chinese_char(self, cp):
- """Checks whether CP is the codepoint of a CJK character."""
- # This defines a "chinese character" as anything in the CJK Unicode block:
- # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
- #
- # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
- # despite its name. The modern Korean Hangul alphabet is a different block,
- # as is Japanese Hiragana and Katakana. Those alphabets are used to write
- # space-separated words, so they are not treated specially and handled
- # like the all of the other languages.
- if (
- (cp >= 0x4E00 and cp <= 0x9FFF)
- or (cp >= 0x3400 and cp <= 0x4DBF) #
- or (cp >= 0x20000 and cp <= 0x2A6DF) #
- or (cp >= 0x2A700 and cp <= 0x2B73F) #
- or (cp >= 0x2B740 and cp <= 0x2B81F) #
- or (cp >= 0x2B820 and cp <= 0x2CEAF) #
- or (cp >= 0xF900 and cp <= 0xFAFF)
- or (cp >= 0x2F800 and cp <= 0x2FA1F) #
- ): #
- return True
- return False
- def _clean_text(self, text):
- """Performs invalid character removal and whitespace cleanup on text."""
- output = []
- for char in text:
- cp = ord(char)
- if cp == 0 or cp == 0xFFFD or _is_control(char):
- continue
- if _is_whitespace(char):
- output.append(" ")
- else:
- output.append(char)
- return "".join(output)
- # Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
- class WordpieceTokenizer:
- """Runs WordPiece tokenization."""
- def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
- self.vocab = vocab
- self.unk_token = unk_token
- self.max_input_chars_per_word = max_input_chars_per_word
- def tokenize(self, text):
- """
- Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
- tokenization using the given vocabulary.
- For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
- Args:
- text: A single token or whitespace separated tokens. This should have
- already been passed through *BasicTokenizer*.
- Returns:
- A list of wordpiece tokens.
- """
- output_tokens = []
- for token in whitespace_tokenize(text):
- chars = list(token)
- if len(chars) > self.max_input_chars_per_word:
- output_tokens.append(self.unk_token)
- continue
- is_bad = False
- start = 0
- sub_tokens = []
- while start < len(chars):
- end = len(chars)
- cur_substr = None
- while start < end:
- substr = "".join(chars[start:end])
- if start > 0:
- substr = "##" + substr
- if substr in self.vocab:
- cur_substr = substr
- break
- end -= 1
- if cur_substr is None:
- is_bad = True
- break
- sub_tokens.append(cur_substr)
- start = end
- if is_bad:
- output_tokens.append(self.unk_token)
- else:
- output_tokens.extend(sub_tokens)
- return output_tokens
- def load_vocab(vocab_file):
- """Loads a vocabulary file into a dictionary."""
- vocab = collections.OrderedDict()
- with open(vocab_file, "r", encoding="utf-8") as reader:
- tokens = reader.readlines()
- for index, token in enumerate(tokens):
- token = token.rstrip("\n")
- vocab[token] = index
- return vocab
- class ProphetNetTokenizer(PreTrainedTokenizer):
- r"""
- Construct a ProphetNetTokenizer. Based on WordPiece.
- This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
- this superclass for more information regarding those methods.
- Args:
- vocab_file (`str`):
- File containing the vocabulary.
- do_lower_case (`bool`, *optional*, defaults to `True`):
- Whether or not to lowercase the input when tokenizing.
- do_basic_tokenize (`bool`, *optional*, defaults to `True`):
- Whether or not to do basic tokenization before WordPiece.
- never_split (`Iterable`, *optional*):
- Collection of tokens which will never be split during tokenization. Only has an effect when
- `do_basic_tokenize=True`
- unk_token (`str`, *optional*, defaults to `"[UNK]"`):
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
- token instead.
- sep_token (`str`, *optional*, defaults to `"[SEP]"`):
- The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
- sequence classification or for a text and a question for question answering. It is also used as the last
- token of a sequence built with special tokens.
- x_sep_token (`str`, *optional*, defaults to `"[X_SEP]"`):
- Special second separator token, which can be generated by [`ProphetNetForConditionalGeneration`]. It is
- used to separate bullet-point like sentences in summarization, *e.g.*.
- pad_token (`str`, *optional*, defaults to `"[PAD]"`):
- The token used for padding, for example when batching sequences of different lengths.
- mask_token (`str`, *optional*, defaults to `"[MASK]"`):
- The token used for masking values. This is the token used when training this model with masked language
- modeling. This is the token which the model will try to predict.
- tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
- Whether or not to tokenize Chinese characters.
- This should likely be deactivated for Japanese (see this
- [issue](https://github.com/huggingface/transformers/issues/328)).
- strip_accents (`bool`, *optional*):
- Whether or not to strip all accents. If this option is not specified, then it will be determined by the
- value for `lowercase` (as in the original BERT).
- clean_up_tokenization_spaces (`bool`, *optional*, defaults to `True`):
- Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
- extra spaces.
- """
- vocab_files_names = VOCAB_FILES_NAMES
- # first name has to correspond to main model input name
- # to make sure `tokenizer.pad(...)` works correctly
- # `ProphetNet` doesn't have `token_type_ids` as argument.
- model_input_names: List[str] = ["input_ids", "attention_mask"]
- def __init__(
- self,
- vocab_file: str,
- do_lower_case: Optional[bool] = True,
- do_basic_tokenize: Optional[bool] = True,
- never_split: Optional[Iterable] = None,
- unk_token: Optional[str] = "[UNK]",
- sep_token: Optional[str] = "[SEP]",
- x_sep_token: Optional[str] = "[X_SEP]",
- pad_token: Optional[str] = "[PAD]",
- mask_token: Optional[str] = "[MASK]",
- tokenize_chinese_chars: Optional[bool] = True,
- strip_accents: Optional[bool] = None,
- clean_up_tokenization_spaces: bool = True,
- **kwargs,
- ):
- if not os.path.isfile(vocab_file):
- raise ValueError(
- f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
- " model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
- )
- self.vocab = load_vocab(vocab_file)
- self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
- self.do_basic_tokenize = do_basic_tokenize
- if do_basic_tokenize:
- self.basic_tokenizer = BasicTokenizer(
- do_lower_case=do_lower_case,
- never_split=never_split,
- tokenize_chinese_chars=tokenize_chinese_chars,
- strip_accents=strip_accents,
- )
- self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
- super().__init__(
- do_lower_case=do_lower_case,
- do_basic_tokenize=do_basic_tokenize,
- never_split=never_split,
- unk_token=unk_token,
- sep_token=sep_token,
- x_sep_token=x_sep_token,
- pad_token=pad_token,
- mask_token=mask_token,
- tokenize_chinese_chars=tokenize_chinese_chars,
- strip_accents=strip_accents,
- clean_up_tokenization_spaces=clean_up_tokenization_spaces,
- **kwargs,
- )
- @property
- def vocab_size(self):
- return len(self.vocab)
- def get_vocab(self):
- return dict(self.vocab, **self.added_tokens_encoder)
- def _tokenize(self, text):
- split_tokens = []
- if self.do_basic_tokenize:
- for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
- # If the token is part of the never_split set
- if token in self.basic_tokenizer.never_split:
- split_tokens.append(token)
- else:
- split_tokens += self.wordpiece_tokenizer.tokenize(token)
- else:
- split_tokens = self.wordpiece_tokenizer.tokenize(text)
- return split_tokens
- def _convert_token_to_id(self, token: str):
- """Converts a token (str) in an id using the vocab."""
- return self.vocab.get(token, self.vocab.get(self.unk_token))
- def _convert_id_to_token(self, index: int):
- """Converts an index (integer) in a token (str) using the vocab."""
- return self.ids_to_tokens.get(index, self.unk_token)
- def convert_tokens_to_string(self, tokens: str):
- """Converts a sequence of tokens (string) in a single string."""
- out_string = " ".join(tokens).replace(" ##", "").strip()
- return out_string
- def get_special_tokens_mask(
- self,
- token_ids_0: List[int],
- token_ids_1: Optional[List[int]] = None,
- already_has_special_tokens: Optional[bool] = False,
- ) -> List[int]:
- """
- Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
- special tokens using the tokenizer `prepare_for_model` method.
- Args:
- token_ids_0 (`List[int]`):
- List of IDs.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- already_has_special_tokens (`bool`, *optional*, defaults to `False`):
- Whether or not the token list is already formatted with special tokens for the model.
- Returns:
- `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
- """
- if already_has_special_tokens:
- return super().get_special_tokens_mask(
- token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
- )
- if token_ids_1 is None:
- return ([0] * len(token_ids_0)) + [1]
- return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
- def create_token_type_ids_from_sequences(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Create a mask from the two sequences passed to be used in a sequence-pair classification task. A ProphetNet
- sequence pair mask has the following format:
- ```
- 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
- | first sequence | second sequence |
- ```
- If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
- Args:
- token_ids_0 (`List[int]`):
- List of IDs.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
- """
- sep = [self.sep_token_id]
- if token_ids_1 is None:
- return len(token_ids_0 + sep) * [0]
- return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
- index = 0
- if os.path.isdir(save_directory):
- vocab_file = os.path.join(
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
- )
- else:
- vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
- with open(vocab_file, "w", encoding="utf-8") as writer:
- for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
- if index != token_index:
- logger.warning(
- f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
- " Please check that the vocabulary is not corrupted!"
- )
- index = token_index
- writer.write(token + "\n")
- index += 1
- return (vocab_file,)
- def build_inputs_with_special_tokens(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
- adding special tokens. A BERT sequence has the following format:
- - single sequence: `[CLS] X [SEP]`
- - pair of sequences: `[CLS] A [SEP] B [SEP]`
- Args:
- token_ids_0 (`List[int]`):
- List of IDs to which the special tokens will be added.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
- """
- if token_ids_1 is None:
- return token_ids_0 + [self.sep_token_id]
- sep = [self.sep_token_id]
- return token_ids_0 + sep + token_ids_1 + sep
|