| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517 |
- # coding=utf-8
- # Copyright 2022 Microsoft Research, Inc. and The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch ResNet model."""
- import math
- from typing import Optional
- import torch
- import torch.utils.checkpoint
- from torch import Tensor, nn
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
- from ...activations import ACT2FN
- from ...modeling_outputs import (
- BackboneOutput,
- BaseModelOutputWithNoAttention,
- BaseModelOutputWithPoolingAndNoAttention,
- ImageClassifierOutputWithNoAttention,
- )
- from ...modeling_utils import PreTrainedModel
- from ...utils import (
- add_code_sample_docstrings,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- logging,
- replace_return_docstrings,
- )
- from ...utils.backbone_utils import BackboneMixin
- from .configuration_resnet import ResNetConfig
- logger = logging.get_logger(__name__)
- # General docstring
- _CONFIG_FOR_DOC = "ResNetConfig"
- # Base docstring
- _CHECKPOINT_FOR_DOC = "microsoft/resnet-50"
- _EXPECTED_OUTPUT_SHAPE = [1, 2048, 7, 7]
- # Image classification docstring
- _IMAGE_CLASS_CHECKPOINT = "microsoft/resnet-50"
- _IMAGE_CLASS_EXPECTED_OUTPUT = "tiger cat"
- class ResNetConvLayer(nn.Module):
- def __init__(
- self, in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 1, activation: str = "relu"
- ):
- super().__init__()
- self.convolution = nn.Conv2d(
- in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, bias=False
- )
- self.normalization = nn.BatchNorm2d(out_channels)
- self.activation = ACT2FN[activation] if activation is not None else nn.Identity()
- def forward(self, input: Tensor) -> Tensor:
- hidden_state = self.convolution(input)
- hidden_state = self.normalization(hidden_state)
- hidden_state = self.activation(hidden_state)
- return hidden_state
- class ResNetEmbeddings(nn.Module):
- """
- ResNet Embeddings (stem) composed of a single aggressive convolution.
- """
- def __init__(self, config: ResNetConfig):
- super().__init__()
- self.embedder = ResNetConvLayer(
- config.num_channels, config.embedding_size, kernel_size=7, stride=2, activation=config.hidden_act
- )
- self.pooler = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- self.num_channels = config.num_channels
- def forward(self, pixel_values: Tensor) -> Tensor:
- num_channels = pixel_values.shape[1]
- if num_channels != self.num_channels:
- raise ValueError(
- "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
- )
- embedding = self.embedder(pixel_values)
- embedding = self.pooler(embedding)
- return embedding
- class ResNetShortCut(nn.Module):
- """
- ResNet shortcut, used to project the residual features to the correct size. If needed, it is also used to
- downsample the input using `stride=2`.
- """
- def __init__(self, in_channels: int, out_channels: int, stride: int = 2):
- super().__init__()
- self.convolution = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False)
- self.normalization = nn.BatchNorm2d(out_channels)
- def forward(self, input: Tensor) -> Tensor:
- hidden_state = self.convolution(input)
- hidden_state = self.normalization(hidden_state)
- return hidden_state
- class ResNetBasicLayer(nn.Module):
- """
- A classic ResNet's residual layer composed by two `3x3` convolutions.
- """
- def __init__(self, in_channels: int, out_channels: int, stride: int = 1, activation: str = "relu"):
- super().__init__()
- should_apply_shortcut = in_channels != out_channels or stride != 1
- self.shortcut = (
- ResNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity()
- )
- self.layer = nn.Sequential(
- ResNetConvLayer(in_channels, out_channels, stride=stride),
- ResNetConvLayer(out_channels, out_channels, activation=None),
- )
- self.activation = ACT2FN[activation]
- def forward(self, hidden_state):
- residual = hidden_state
- hidden_state = self.layer(hidden_state)
- residual = self.shortcut(residual)
- hidden_state += residual
- hidden_state = self.activation(hidden_state)
- return hidden_state
- class ResNetBottleNeckLayer(nn.Module):
- """
- A classic ResNet's bottleneck layer composed by three `3x3` convolutions.
- The first `1x1` convolution reduces the input by a factor of `reduction` in order to make the second `3x3`
- convolution faster. The last `1x1` convolution remaps the reduced features to `out_channels`. If
- `downsample_in_bottleneck` is true, downsample will be in the first layer instead of the second layer.
- """
- def __init__(
- self,
- in_channels: int,
- out_channels: int,
- stride: int = 1,
- activation: str = "relu",
- reduction: int = 4,
- downsample_in_bottleneck: bool = False,
- ):
- super().__init__()
- should_apply_shortcut = in_channels != out_channels or stride != 1
- reduces_channels = out_channels // reduction
- self.shortcut = (
- ResNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity()
- )
- self.layer = nn.Sequential(
- ResNetConvLayer(
- in_channels, reduces_channels, kernel_size=1, stride=stride if downsample_in_bottleneck else 1
- ),
- ResNetConvLayer(reduces_channels, reduces_channels, stride=stride if not downsample_in_bottleneck else 1),
- ResNetConvLayer(reduces_channels, out_channels, kernel_size=1, activation=None),
- )
- self.activation = ACT2FN[activation]
- def forward(self, hidden_state):
- residual = hidden_state
- hidden_state = self.layer(hidden_state)
- residual = self.shortcut(residual)
- hidden_state += residual
- hidden_state = self.activation(hidden_state)
- return hidden_state
- class ResNetStage(nn.Module):
- """
- A ResNet stage composed by stacked layers.
- """
- def __init__(
- self,
- config: ResNetConfig,
- in_channels: int,
- out_channels: int,
- stride: int = 2,
- depth: int = 2,
- ):
- super().__init__()
- layer = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer
- if config.layer_type == "bottleneck":
- first_layer = layer(
- in_channels,
- out_channels,
- stride=stride,
- activation=config.hidden_act,
- downsample_in_bottleneck=config.downsample_in_bottleneck,
- )
- else:
- first_layer = layer(in_channels, out_channels, stride=stride, activation=config.hidden_act)
- self.layers = nn.Sequential(
- first_layer, *[layer(out_channels, out_channels, activation=config.hidden_act) for _ in range(depth - 1)]
- )
- def forward(self, input: Tensor) -> Tensor:
- hidden_state = input
- for layer in self.layers:
- hidden_state = layer(hidden_state)
- return hidden_state
- class ResNetEncoder(nn.Module):
- def __init__(self, config: ResNetConfig):
- super().__init__()
- self.stages = nn.ModuleList([])
- # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
- self.stages.append(
- ResNetStage(
- config,
- config.embedding_size,
- config.hidden_sizes[0],
- stride=2 if config.downsample_in_first_stage else 1,
- depth=config.depths[0],
- )
- )
- in_out_channels = zip(config.hidden_sizes, config.hidden_sizes[1:])
- for (in_channels, out_channels), depth in zip(in_out_channels, config.depths[1:]):
- self.stages.append(ResNetStage(config, in_channels, out_channels, depth=depth))
- def forward(
- self, hidden_state: Tensor, output_hidden_states: bool = False, return_dict: bool = True
- ) -> BaseModelOutputWithNoAttention:
- hidden_states = () if output_hidden_states else None
- for stage_module in self.stages:
- if output_hidden_states:
- hidden_states = hidden_states + (hidden_state,)
- hidden_state = stage_module(hidden_state)
- if output_hidden_states:
- hidden_states = hidden_states + (hidden_state,)
- if not return_dict:
- return tuple(v for v in [hidden_state, hidden_states] if v is not None)
- return BaseModelOutputWithNoAttention(
- last_hidden_state=hidden_state,
- hidden_states=hidden_states,
- )
- class ResNetPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = ResNetConfig
- base_model_prefix = "resnet"
- main_input_name = "pixel_values"
- _no_split_modules = ["ResNetConvLayer", "ResNetShortCut"]
- def _init_weights(self, module):
- if isinstance(module, nn.Conv2d):
- nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
- # copied from the `reset_parameters` method of `class Linear(Module)` in `torch`.
- elif isinstance(module, nn.Linear):
- nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
- if module.bias is not None:
- fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight)
- bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
- nn.init.uniform_(module.bias, -bound, bound)
- elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
- nn.init.constant_(module.weight, 1)
- nn.init.constant_(module.bias, 0)
- RESNET_START_DOCSTRING = r"""
- This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
- as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
- behavior.
- Parameters:
- config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- RESNET_INPUTS_DOCSTRING = r"""
- Args:
- pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
- Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
- [`ConvNextImageProcessor.__call__`] for details.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- @add_start_docstrings(
- "The bare ResNet model outputting raw features without any specific head on top.",
- RESNET_START_DOCSTRING,
- )
- class ResNetModel(ResNetPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.config = config
- self.embedder = ResNetEmbeddings(config)
- self.encoder = ResNetEncoder(config)
- self.pooler = nn.AdaptiveAvgPool2d((1, 1))
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(RESNET_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=BaseModelOutputWithPoolingAndNoAttention,
- config_class=_CONFIG_FOR_DOC,
- modality="vision",
- expected_output=_EXPECTED_OUTPUT_SHAPE,
- )
- def forward(
- self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None
- ) -> BaseModelOutputWithPoolingAndNoAttention:
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- embedding_output = self.embedder(pixel_values)
- encoder_outputs = self.encoder(
- embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict
- )
- last_hidden_state = encoder_outputs[0]
- pooled_output = self.pooler(last_hidden_state)
- if not return_dict:
- return (last_hidden_state, pooled_output) + encoder_outputs[1:]
- return BaseModelOutputWithPoolingAndNoAttention(
- last_hidden_state=last_hidden_state,
- pooler_output=pooled_output,
- hidden_states=encoder_outputs.hidden_states,
- )
- @add_start_docstrings(
- """
- ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
- ImageNet.
- """,
- RESNET_START_DOCSTRING,
- )
- class ResNetForImageClassification(ResNetPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.resnet = ResNetModel(config)
- # classification head
- self.classifier = nn.Sequential(
- nn.Flatten(),
- nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity(),
- )
- # initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(RESNET_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_IMAGE_CLASS_CHECKPOINT,
- output_type=ImageClassifierOutputWithNoAttention,
- config_class=_CONFIG_FOR_DOC,
- expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
- )
- def forward(
- self,
- pixel_values: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> ImageClassifierOutputWithNoAttention:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.resnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
- pooled_output = outputs.pooler_output if return_dict else outputs[1]
- logits = self.classifier(pooled_output)
- loss = None
- if labels is not None:
- if self.config.problem_type is None:
- if self.num_labels == 1:
- self.config.problem_type = "regression"
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
- self.config.problem_type = "single_label_classification"
- else:
- self.config.problem_type = "multi_label_classification"
- if self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.num_labels == 1:
- loss = loss_fct(logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(logits, labels)
- if not return_dict:
- output = (logits,) + outputs[2:]
- return (loss,) + output if loss is not None else output
- return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
- @add_start_docstrings(
- """
- ResNet backbone, to be used with frameworks like DETR and MaskFormer.
- """,
- RESNET_START_DOCSTRING,
- )
- class ResNetBackbone(ResNetPreTrainedModel, BackboneMixin):
- def __init__(self, config):
- super().__init__(config)
- super()._init_backbone(config)
- self.num_features = [config.embedding_size] + config.hidden_sizes
- self.embedder = ResNetEmbeddings(config)
- self.encoder = ResNetEncoder(config)
- # initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(RESNET_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None
- ) -> BackboneOutput:
- """
- Returns:
- Examples:
- ```python
- >>> from transformers import AutoImageProcessor, AutoBackbone
- >>> import torch
- >>> from PIL import Image
- >>> import requests
- >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
- >>> image = Image.open(requests.get(url, stream=True).raw)
- >>> processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
- >>> model = AutoBackbone.from_pretrained(
- ... "microsoft/resnet-50", out_features=["stage1", "stage2", "stage3", "stage4"]
- ... )
- >>> inputs = processor(image, return_tensors="pt")
- >>> outputs = model(**inputs)
- >>> feature_maps = outputs.feature_maps
- >>> list(feature_maps[-1].shape)
- [1, 2048, 7, 7]
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- embedding_output = self.embedder(pixel_values)
- outputs = self.encoder(embedding_output, output_hidden_states=True, return_dict=True)
- hidden_states = outputs.hidden_states
- feature_maps = ()
- for idx, stage in enumerate(self.stage_names):
- if stage in self.out_features:
- feature_maps += (hidden_states[idx],)
- if not return_dict:
- output = (feature_maps,)
- if output_hidden_states:
- output += (outputs.hidden_states,)
- return output
- return BackboneOutput(
- feature_maps=feature_maps,
- hidden_states=outputs.hidden_states if output_hidden_states else None,
- attentions=None,
- )
|