| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770 |
- # coding=utf-8
- # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
- # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """TF 2.0 RoBERTa model."""
- from __future__ import annotations
- import math
- import warnings
- from typing import Optional, Tuple, Union
- import numpy as np
- import tensorflow as tf
- from ...activations_tf import get_tf_activation
- from ...modeling_tf_outputs import (
- TFBaseModelOutputWithPastAndCrossAttentions,
- TFBaseModelOutputWithPoolingAndCrossAttentions,
- TFCausalLMOutputWithCrossAttentions,
- TFMaskedLMOutput,
- TFMultipleChoiceModelOutput,
- TFQuestionAnsweringModelOutput,
- TFSequenceClassifierOutput,
- TFTokenClassifierOutput,
- )
- from ...modeling_tf_utils import (
- TFCausalLanguageModelingLoss,
- TFMaskedLanguageModelingLoss,
- TFModelInputType,
- TFMultipleChoiceLoss,
- TFPreTrainedModel,
- TFQuestionAnsweringLoss,
- TFSequenceClassificationLoss,
- TFTokenClassificationLoss,
- get_initializer,
- keras,
- keras_serializable,
- unpack_inputs,
- )
- from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
- from ...utils import (
- add_code_sample_docstrings,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- logging,
- )
- from .configuration_roberta import RobertaConfig
- logger = logging.get_logger(__name__)
- _CHECKPOINT_FOR_DOC = "FacebookAI/roberta-base"
- _CONFIG_FOR_DOC = "RobertaConfig"
- class TFRobertaEmbeddings(keras.layers.Layer):
- """
- Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
- """
- def __init__(self, config, **kwargs):
- super().__init__(**kwargs)
- self.padding_idx = 1
- self.config = config
- self.hidden_size = config.hidden_size
- self.max_position_embeddings = config.max_position_embeddings
- self.initializer_range = config.initializer_range
- self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
- self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
- def build(self, input_shape=None):
- with tf.name_scope("word_embeddings"):
- self.weight = self.add_weight(
- name="weight",
- shape=[self.config.vocab_size, self.hidden_size],
- initializer=get_initializer(self.initializer_range),
- )
- with tf.name_scope("token_type_embeddings"):
- self.token_type_embeddings = self.add_weight(
- name="embeddings",
- shape=[self.config.type_vocab_size, self.hidden_size],
- initializer=get_initializer(self.initializer_range),
- )
- with tf.name_scope("position_embeddings"):
- self.position_embeddings = self.add_weight(
- name="embeddings",
- shape=[self.max_position_embeddings, self.hidden_size],
- initializer=get_initializer(self.initializer_range),
- )
- if self.built:
- return
- self.built = True
- if getattr(self, "LayerNorm", None) is not None:
- with tf.name_scope(self.LayerNorm.name):
- self.LayerNorm.build([None, None, self.config.hidden_size])
- def create_position_ids_from_input_ids(self, input_ids, past_key_values_length=0):
- """
- Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding
- symbols are ignored. This is modified from fairseq's `utils.make_positions`.
- Args:
- input_ids: tf.Tensor
- Returns: tf.Tensor
- """
- mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype)
- incremental_indices = (tf.math.cumsum(mask, axis=1) + past_key_values_length) * mask
- return incremental_indices + self.padding_idx
- def call(
- self,
- input_ids=None,
- position_ids=None,
- token_type_ids=None,
- inputs_embeds=None,
- past_key_values_length=0,
- training=False,
- ):
- """
- Applies embedding based on inputs tensor.
- Returns:
- final_embeddings (`tf.Tensor`): output embedding tensor.
- """
- assert not (input_ids is None and inputs_embeds is None)
- if input_ids is not None:
- check_embeddings_within_bounds(input_ids, self.config.vocab_size)
- inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
- input_shape = shape_list(inputs_embeds)[:-1]
- if token_type_ids is None:
- token_type_ids = tf.fill(dims=input_shape, value=0)
- if position_ids is None:
- if input_ids is not None:
- # Create the position ids from the input token ids. Any padded tokens remain padded.
- position_ids = self.create_position_ids_from_input_ids(
- input_ids=input_ids, past_key_values_length=past_key_values_length
- )
- else:
- position_ids = tf.expand_dims(
- tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1), axis=0
- )
- position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
- token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
- final_embeddings = inputs_embeds + position_embeds + token_type_embeds
- final_embeddings = self.LayerNorm(inputs=final_embeddings)
- final_embeddings = self.dropout(inputs=final_embeddings, training=training)
- return final_embeddings
- # Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Roberta
- class TFRobertaPooler(keras.layers.Layer):
- def __init__(self, config: RobertaConfig, **kwargs):
- super().__init__(**kwargs)
- self.dense = keras.layers.Dense(
- units=config.hidden_size,
- kernel_initializer=get_initializer(config.initializer_range),
- activation="tanh",
- name="dense",
- )
- self.config = config
- def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
- # We "pool" the model by simply taking the hidden state corresponding
- # to the first token.
- first_token_tensor = hidden_states[:, 0]
- pooled_output = self.dense(inputs=first_token_tensor)
- return pooled_output
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "dense", None) is not None:
- with tf.name_scope(self.dense.name):
- self.dense.build([None, None, self.config.hidden_size])
- # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->Roberta
- class TFRobertaSelfAttention(keras.layers.Layer):
- def __init__(self, config: RobertaConfig, **kwargs):
- super().__init__(**kwargs)
- if config.hidden_size % config.num_attention_heads != 0:
- raise ValueError(
- f"The hidden size ({config.hidden_size}) is not a multiple of the number "
- f"of attention heads ({config.num_attention_heads})"
- )
- self.num_attention_heads = config.num_attention_heads
- self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
- self.all_head_size = self.num_attention_heads * self.attention_head_size
- self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
- self.query = keras.layers.Dense(
- units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
- )
- self.key = keras.layers.Dense(
- units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
- )
- self.value = keras.layers.Dense(
- units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
- )
- self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
- self.is_decoder = config.is_decoder
- self.config = config
- def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
- # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
- tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
- # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
- return tf.transpose(tensor, perm=[0, 2, 1, 3])
- def call(
- self,
- hidden_states: tf.Tensor,
- attention_mask: tf.Tensor,
- head_mask: tf.Tensor,
- encoder_hidden_states: tf.Tensor,
- encoder_attention_mask: tf.Tensor,
- past_key_value: Tuple[tf.Tensor],
- output_attentions: bool,
- training: bool = False,
- ) -> Tuple[tf.Tensor]:
- batch_size = shape_list(hidden_states)[0]
- mixed_query_layer = self.query(inputs=hidden_states)
- # If this is instantiated as a cross-attention module, the keys
- # and values come from an encoder; the attention mask needs to be
- # such that the encoder's padding tokens are not attended to.
- is_cross_attention = encoder_hidden_states is not None
- if is_cross_attention and past_key_value is not None:
- # reuse k,v, cross_attentions
- key_layer = past_key_value[0]
- value_layer = past_key_value[1]
- attention_mask = encoder_attention_mask
- elif is_cross_attention:
- key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size)
- value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size)
- attention_mask = encoder_attention_mask
- elif past_key_value is not None:
- key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
- value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
- key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
- value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
- else:
- key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size)
- value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size)
- query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
- if self.is_decoder:
- # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
- # Further calls to cross_attention layer can then reuse all cross-attention
- # key/value_states (first "if" case)
- # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
- # all previous decoder key/value_states. Further calls to uni-directional self-attention
- # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
- # if encoder bi-directional self-attention `past_key_value` is always `None`
- past_key_value = (key_layer, value_layer)
- # Take the dot product between "query" and "key" to get the raw attention scores.
- # (batch size, num_heads, seq_len_q, seq_len_k)
- attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
- dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
- attention_scores = tf.divide(attention_scores, dk)
- if attention_mask is not None:
- # Apply the attention mask is (precomputed for all layers in TFRobertaModel call() function)
- attention_scores = tf.add(attention_scores, attention_mask)
- # Normalize the attention scores to probabilities.
- attention_probs = stable_softmax(logits=attention_scores, axis=-1)
- # This is actually dropping out entire tokens to attend to, which might
- # seem a bit unusual, but is taken from the original Transformer paper.
- attention_probs = self.dropout(inputs=attention_probs, training=training)
- # Mask heads if we want to
- if head_mask is not None:
- attention_probs = tf.multiply(attention_probs, head_mask)
- attention_output = tf.matmul(attention_probs, value_layer)
- attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
- # (batch_size, seq_len_q, all_head_size)
- attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
- outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
- if self.is_decoder:
- outputs = outputs + (past_key_value,)
- return outputs
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "query", None) is not None:
- with tf.name_scope(self.query.name):
- self.query.build([None, None, self.config.hidden_size])
- if getattr(self, "key", None) is not None:
- with tf.name_scope(self.key.name):
- self.key.build([None, None, self.config.hidden_size])
- if getattr(self, "value", None) is not None:
- with tf.name_scope(self.value.name):
- self.value.build([None, None, self.config.hidden_size])
- # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Roberta
- class TFRobertaSelfOutput(keras.layers.Layer):
- def __init__(self, config: RobertaConfig, **kwargs):
- super().__init__(**kwargs)
- self.dense = keras.layers.Dense(
- units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
- )
- self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
- self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
- self.config = config
- def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
- hidden_states = self.dense(inputs=hidden_states)
- hidden_states = self.dropout(inputs=hidden_states, training=training)
- hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
- return hidden_states
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "dense", None) is not None:
- with tf.name_scope(self.dense.name):
- self.dense.build([None, None, self.config.hidden_size])
- if getattr(self, "LayerNorm", None) is not None:
- with tf.name_scope(self.LayerNorm.name):
- self.LayerNorm.build([None, None, self.config.hidden_size])
- # Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Roberta
- class TFRobertaAttention(keras.layers.Layer):
- def __init__(self, config: RobertaConfig, **kwargs):
- super().__init__(**kwargs)
- self.self_attention = TFRobertaSelfAttention(config, name="self")
- self.dense_output = TFRobertaSelfOutput(config, name="output")
- def prune_heads(self, heads):
- raise NotImplementedError
- def call(
- self,
- input_tensor: tf.Tensor,
- attention_mask: tf.Tensor,
- head_mask: tf.Tensor,
- encoder_hidden_states: tf.Tensor,
- encoder_attention_mask: tf.Tensor,
- past_key_value: Tuple[tf.Tensor],
- output_attentions: bool,
- training: bool = False,
- ) -> Tuple[tf.Tensor]:
- self_outputs = self.self_attention(
- hidden_states=input_tensor,
- attention_mask=attention_mask,
- head_mask=head_mask,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- past_key_value=past_key_value,
- output_attentions=output_attentions,
- training=training,
- )
- attention_output = self.dense_output(
- hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
- )
- # add attentions (possibly with past_key_value) if we output them
- outputs = (attention_output,) + self_outputs[1:]
- return outputs
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "self_attention", None) is not None:
- with tf.name_scope(self.self_attention.name):
- self.self_attention.build(None)
- if getattr(self, "dense_output", None) is not None:
- with tf.name_scope(self.dense_output.name):
- self.dense_output.build(None)
- # Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Roberta
- class TFRobertaIntermediate(keras.layers.Layer):
- def __init__(self, config: RobertaConfig, **kwargs):
- super().__init__(**kwargs)
- self.dense = keras.layers.Dense(
- units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
- )
- if isinstance(config.hidden_act, str):
- self.intermediate_act_fn = get_tf_activation(config.hidden_act)
- else:
- self.intermediate_act_fn = config.hidden_act
- self.config = config
- def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
- hidden_states = self.dense(inputs=hidden_states)
- hidden_states = self.intermediate_act_fn(hidden_states)
- return hidden_states
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "dense", None) is not None:
- with tf.name_scope(self.dense.name):
- self.dense.build([None, None, self.config.hidden_size])
- # Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Roberta
- class TFRobertaOutput(keras.layers.Layer):
- def __init__(self, config: RobertaConfig, **kwargs):
- super().__init__(**kwargs)
- self.dense = keras.layers.Dense(
- units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
- )
- self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
- self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
- self.config = config
- def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
- hidden_states = self.dense(inputs=hidden_states)
- hidden_states = self.dropout(inputs=hidden_states, training=training)
- hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor)
- return hidden_states
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "dense", None) is not None:
- with tf.name_scope(self.dense.name):
- self.dense.build([None, None, self.config.intermediate_size])
- if getattr(self, "LayerNorm", None) is not None:
- with tf.name_scope(self.LayerNorm.name):
- self.LayerNorm.build([None, None, self.config.hidden_size])
- # Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Roberta
- class TFRobertaLayer(keras.layers.Layer):
- def __init__(self, config: RobertaConfig, **kwargs):
- super().__init__(**kwargs)
- self.attention = TFRobertaAttention(config, name="attention")
- self.is_decoder = config.is_decoder
- self.add_cross_attention = config.add_cross_attention
- if self.add_cross_attention:
- if not self.is_decoder:
- raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
- self.crossattention = TFRobertaAttention(config, name="crossattention")
- self.intermediate = TFRobertaIntermediate(config, name="intermediate")
- self.bert_output = TFRobertaOutput(config, name="output")
- def call(
- self,
- hidden_states: tf.Tensor,
- attention_mask: tf.Tensor,
- head_mask: tf.Tensor,
- encoder_hidden_states: tf.Tensor | None,
- encoder_attention_mask: tf.Tensor | None,
- past_key_value: Tuple[tf.Tensor] | None,
- output_attentions: bool,
- training: bool = False,
- ) -> Tuple[tf.Tensor]:
- # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
- self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
- self_attention_outputs = self.attention(
- input_tensor=hidden_states,
- attention_mask=attention_mask,
- head_mask=head_mask,
- encoder_hidden_states=None,
- encoder_attention_mask=None,
- past_key_value=self_attn_past_key_value,
- output_attentions=output_attentions,
- training=training,
- )
- attention_output = self_attention_outputs[0]
- # if decoder, the last output is tuple of self-attn cache
- if self.is_decoder:
- outputs = self_attention_outputs[1:-1]
- present_key_value = self_attention_outputs[-1]
- else:
- outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
- cross_attn_present_key_value = None
- if self.is_decoder and encoder_hidden_states is not None:
- if not hasattr(self, "crossattention"):
- raise ValueError(
- f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
- " by setting `config.add_cross_attention=True`"
- )
- # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
- cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
- cross_attention_outputs = self.crossattention(
- input_tensor=attention_output,
- attention_mask=attention_mask,
- head_mask=head_mask,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- past_key_value=cross_attn_past_key_value,
- output_attentions=output_attentions,
- training=training,
- )
- attention_output = cross_attention_outputs[0]
- outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
- # add cross-attn cache to positions 3,4 of present_key_value tuple
- cross_attn_present_key_value = cross_attention_outputs[-1]
- present_key_value = present_key_value + cross_attn_present_key_value
- intermediate_output = self.intermediate(hidden_states=attention_output)
- layer_output = self.bert_output(
- hidden_states=intermediate_output, input_tensor=attention_output, training=training
- )
- outputs = (layer_output,) + outputs # add attentions if we output them
- # if decoder, return the attn key/values as the last output
- if self.is_decoder:
- outputs = outputs + (present_key_value,)
- return outputs
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "attention", None) is not None:
- with tf.name_scope(self.attention.name):
- self.attention.build(None)
- if getattr(self, "intermediate", None) is not None:
- with tf.name_scope(self.intermediate.name):
- self.intermediate.build(None)
- if getattr(self, "bert_output", None) is not None:
- with tf.name_scope(self.bert_output.name):
- self.bert_output.build(None)
- if getattr(self, "crossattention", None) is not None:
- with tf.name_scope(self.crossattention.name):
- self.crossattention.build(None)
- # Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Roberta
- class TFRobertaEncoder(keras.layers.Layer):
- def __init__(self, config: RobertaConfig, **kwargs):
- super().__init__(**kwargs)
- self.config = config
- self.layer = [TFRobertaLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
- def call(
- self,
- hidden_states: tf.Tensor,
- attention_mask: tf.Tensor,
- head_mask: tf.Tensor,
- encoder_hidden_states: tf.Tensor | None,
- encoder_attention_mask: tf.Tensor | None,
- past_key_values: Tuple[Tuple[tf.Tensor]] | None,
- use_cache: Optional[bool],
- output_attentions: bool,
- output_hidden_states: bool,
- return_dict: bool,
- training: bool = False,
- ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]:
- all_hidden_states = () if output_hidden_states else None
- all_attentions = () if output_attentions else None
- all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
- next_decoder_cache = () if use_cache else None
- for i, layer_module in enumerate(self.layer):
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- past_key_value = past_key_values[i] if past_key_values is not None else None
- layer_outputs = layer_module(
- hidden_states=hidden_states,
- attention_mask=attention_mask,
- head_mask=head_mask[i],
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- past_key_value=past_key_value,
- output_attentions=output_attentions,
- training=training,
- )
- hidden_states = layer_outputs[0]
- if use_cache:
- next_decoder_cache += (layer_outputs[-1],)
- if output_attentions:
- all_attentions = all_attentions + (layer_outputs[1],)
- if self.config.add_cross_attention and encoder_hidden_states is not None:
- all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
- # Add last layer
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(
- v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None
- )
- return TFBaseModelOutputWithPastAndCrossAttentions(
- last_hidden_state=hidden_states,
- past_key_values=next_decoder_cache,
- hidden_states=all_hidden_states,
- attentions=all_attentions,
- cross_attentions=all_cross_attentions,
- )
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "layer", None) is not None:
- for layer in self.layer:
- with tf.name_scope(layer.name):
- layer.build(None)
- @keras_serializable
- class TFRobertaMainLayer(keras.layers.Layer):
- config_class = RobertaConfig
- def __init__(self, config, add_pooling_layer=True, **kwargs):
- super().__init__(**kwargs)
- self.config = config
- self.is_decoder = config.is_decoder
- self.num_hidden_layers = config.num_hidden_layers
- self.initializer_range = config.initializer_range
- self.output_attentions = config.output_attentions
- self.output_hidden_states = config.output_hidden_states
- self.return_dict = config.use_return_dict
- self.encoder = TFRobertaEncoder(config, name="encoder")
- self.pooler = TFRobertaPooler(config, name="pooler") if add_pooling_layer else None
- # The embeddings must be the last declaration in order to follow the weights order
- self.embeddings = TFRobertaEmbeddings(config, name="embeddings")
- # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.get_input_embeddings
- def get_input_embeddings(self) -> keras.layers.Layer:
- return self.embeddings
- # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.set_input_embeddings
- def set_input_embeddings(self, value: tf.Variable):
- self.embeddings.weight = value
- self.embeddings.vocab_size = shape_list(value)[0]
- # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer._prune_heads
- def _prune_heads(self, heads_to_prune):
- """
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
- class PreTrainedModel
- """
- raise NotImplementedError
- @unpack_inputs
- # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.call
- def call(
- self,
- input_ids: TFModelInputType | None = None,
- attention_mask: np.ndarray | tf.Tensor | None = None,
- token_type_ids: np.ndarray | tf.Tensor | None = None,
- position_ids: np.ndarray | tf.Tensor | None = None,
- head_mask: np.ndarray | tf.Tensor | None = None,
- inputs_embeds: np.ndarray | tf.Tensor | None = None,
- encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
- encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
- past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- training: bool = False,
- ) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
- if not self.config.is_decoder:
- use_cache = False
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- input_shape = shape_list(input_ids)
- elif inputs_embeds is not None:
- input_shape = shape_list(inputs_embeds)[:-1]
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds")
- batch_size, seq_length = input_shape
- if past_key_values is None:
- past_key_values_length = 0
- past_key_values = [None] * len(self.encoder.layer)
- else:
- past_key_values_length = shape_list(past_key_values[0][0])[-2]
- if attention_mask is None:
- attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
- if token_type_ids is None:
- token_type_ids = tf.fill(dims=input_shape, value=0)
- embedding_output = self.embeddings(
- input_ids=input_ids,
- position_ids=position_ids,
- token_type_ids=token_type_ids,
- inputs_embeds=inputs_embeds,
- past_key_values_length=past_key_values_length,
- training=training,
- )
- # We create a 3D attention mask from a 2D tensor mask.
- # Sizes are [batch_size, 1, 1, to_seq_length]
- # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
- # this attention mask is more simple than the triangular masking of causal attention
- # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
- attention_mask_shape = shape_list(attention_mask)
- mask_seq_length = seq_length + past_key_values_length
- # Copied from `modeling_tf_t5.py`
- # Provided a padding mask of dimensions [batch_size, mask_seq_length]
- # - if the model is a decoder, apply a causal mask in addition to the padding mask
- # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
- if self.is_decoder:
- seq_ids = tf.range(mask_seq_length)
- causal_mask = tf.less_equal(
- tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)),
- seq_ids[None, :, None],
- )
- causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype)
- extended_attention_mask = causal_mask * attention_mask[:, None, :]
- attention_mask_shape = shape_list(extended_attention_mask)
- extended_attention_mask = tf.reshape(
- extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2])
- )
- if past_key_values[0] is not None:
- # attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length]
- extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :]
- else:
- extended_attention_mask = tf.reshape(
- attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1])
- )
- # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
- # masked positions, this operation will create a tensor which is 0.0 for
- # positions we want to attend and -10000.0 for masked positions.
- # Since we are adding it to the raw scores before the softmax, this is
- # effectively the same as removing these entirely.
- extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
- one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
- ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
- extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
- # Copied from `modeling_tf_t5.py` with -1e9 -> -10000
- if self.is_decoder and encoder_attention_mask is not None:
- # If a 2D ou 3D attention mask is provided for the cross-attention
- # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
- # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
- encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype)
- num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
- if num_dims_encoder_attention_mask == 3:
- encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
- if num_dims_encoder_attention_mask == 2:
- encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
- # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
- # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
- # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
- # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
- encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
- else:
- encoder_extended_attention_mask = None
- # Prepare head mask if needed
- # 1.0 in head_mask indicate we keep the head
- # attention_probs has shape bsz x n_heads x N x N
- # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
- # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
- if head_mask is not None:
- raise NotImplementedError
- else:
- head_mask = [None] * self.config.num_hidden_layers
- encoder_outputs = self.encoder(
- hidden_states=embedding_output,
- attention_mask=extended_attention_mask,
- head_mask=head_mask,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_extended_attention_mask,
- past_key_values=past_key_values,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- training=training,
- )
- sequence_output = encoder_outputs[0]
- pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
- if not return_dict:
- return (
- sequence_output,
- pooled_output,
- ) + encoder_outputs[1:]
- return TFBaseModelOutputWithPoolingAndCrossAttentions(
- last_hidden_state=sequence_output,
- pooler_output=pooled_output,
- past_key_values=encoder_outputs.past_key_values,
- hidden_states=encoder_outputs.hidden_states,
- attentions=encoder_outputs.attentions,
- cross_attentions=encoder_outputs.cross_attentions,
- )
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "encoder", None) is not None:
- with tf.name_scope(self.encoder.name):
- self.encoder.build(None)
- if getattr(self, "pooler", None) is not None:
- with tf.name_scope(self.pooler.name):
- self.pooler.build(None)
- if getattr(self, "embeddings", None) is not None:
- with tf.name_scope(self.embeddings.name):
- self.embeddings.build(None)
- class TFRobertaPreTrainedModel(TFPreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = RobertaConfig
- base_model_prefix = "roberta"
- ROBERTA_START_DOCSTRING = r"""
- This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
- as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
- behavior.
- <Tip>
- TensorFlow models and layers in `transformers` accept two formats as input:
- - having all inputs as keyword arguments (like PyTorch models), or
- - having all inputs as a list, tuple or dict in the first positional argument.
- The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
- and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
- pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
- format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
- the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
- positional argument:
- - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
- `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- - a dictionary with one or several input Tensors associated to the input names given in the docstring:
- `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
- Note that when creating models and layers with
- [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
- about any of this, as you can just pass inputs like you would to any other Python function!
- </Tip>
- Parameters:
- config ([`RobertaConfig`]): Model configuration class with all the parameters of the
- model. Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- ROBERTA_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
- Indices of input sequence tokens in the vocabulary.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
- [`PreTrainedTokenizer.encode`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
- Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
- 1]`:
- - 0 corresponds to a *sentence A* token,
- - 1 corresponds to a *sentence B* token.
- [What are token type IDs?](../glossary#token-type-ids)
- position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.max_position_embeddings - 1]`.
- [What are position IDs?](../glossary#position-ids)
- head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
- model's internal embedding lookup matrix.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
- config will be used instead.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
- used instead.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
- eager mode, in graph mode the value will always be set to True.
- training (`bool`, *optional*, defaults to `False`):
- Whether or not to use the model in training mode (some modules like dropout modules have different
- behaviors between training and evaluation).
- """
- @add_start_docstrings(
- "The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.",
- ROBERTA_START_DOCSTRING,
- )
- class TFRobertaModel(TFRobertaPreTrainedModel):
- def __init__(self, config, *inputs, **kwargs):
- super().__init__(config, *inputs, **kwargs)
- self.roberta = TFRobertaMainLayer(config, name="roberta")
- @unpack_inputs
- @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=TFBaseModelOutputWithPoolingAndCrossAttentions,
- config_class=_CONFIG_FOR_DOC,
- )
- def call(
- self,
- input_ids: TFModelInputType | None = None,
- attention_mask: np.ndarray | tf.Tensor | None = None,
- token_type_ids: np.ndarray | tf.Tensor | None = None,
- position_ids: np.ndarray | tf.Tensor | None = None,
- head_mask: np.ndarray | tf.Tensor | None = None,
- inputs_embeds: np.ndarray | tf.Tensor | None = None,
- encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
- encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
- past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- training: Optional[bool] = False,
- ) -> Union[Tuple, TFBaseModelOutputWithPoolingAndCrossAttentions]:
- r"""
- encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
- the model is configured as a decoder.
- encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
- the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
- contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
- use_cache (`bool`, *optional*, defaults to `True`):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
- `past_key_values`). Set to `False` during training, `True` during generation
- """
- outputs = self.roberta(
- input_ids=input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- past_key_values=past_key_values,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- training=training,
- )
- return outputs
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "roberta", None) is not None:
- with tf.name_scope(self.roberta.name):
- self.roberta.build(None)
- class TFRobertaLMHead(keras.layers.Layer):
- """Roberta Head for masked language modeling."""
- def __init__(self, config, input_embeddings, **kwargs):
- super().__init__(**kwargs)
- self.config = config
- self.hidden_size = config.hidden_size
- self.dense = keras.layers.Dense(
- config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
- )
- self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
- self.act = get_tf_activation("gelu")
- # The output weights are the same as the input embeddings, but there is
- # an output-only bias for each token.
- self.decoder = input_embeddings
- def build(self, input_shape=None):
- self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
- if self.built:
- return
- self.built = True
- if getattr(self, "dense", None) is not None:
- with tf.name_scope(self.dense.name):
- self.dense.build([None, None, self.config.hidden_size])
- if getattr(self, "layer_norm", None) is not None:
- with tf.name_scope(self.layer_norm.name):
- self.layer_norm.build([None, None, self.config.hidden_size])
- def get_output_embeddings(self):
- return self.decoder
- def set_output_embeddings(self, value):
- self.decoder.weight = value
- self.decoder.vocab_size = shape_list(value)[0]
- def get_bias(self):
- return {"bias": self.bias}
- def set_bias(self, value):
- self.bias = value["bias"]
- self.config.vocab_size = shape_list(value["bias"])[0]
- def call(self, hidden_states):
- hidden_states = self.dense(hidden_states)
- hidden_states = self.act(hidden_states)
- hidden_states = self.layer_norm(hidden_states)
- # project back to size of vocabulary with bias
- seq_length = shape_list(tensor=hidden_states)[1]
- hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
- hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True)
- hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
- hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
- return hidden_states
- @add_start_docstrings("""RoBERTa Model with a `language modeling` head on top.""", ROBERTA_START_DOCSTRING)
- class TFRobertaForMaskedLM(TFRobertaPreTrainedModel, TFMaskedLanguageModelingLoss):
- # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
- _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"]
- def __init__(self, config, *inputs, **kwargs):
- super().__init__(config, *inputs, **kwargs)
- self.roberta = TFRobertaMainLayer(config, add_pooling_layer=False, name="roberta")
- self.lm_head = TFRobertaLMHead(config, self.roberta.embeddings, name="lm_head")
- def get_lm_head(self):
- return self.lm_head
- def get_prefix_bias_name(self):
- warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
- return self.name + "/" + self.lm_head.name
- @unpack_inputs
- @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=TFMaskedLMOutput,
- config_class=_CONFIG_FOR_DOC,
- mask="<mask>",
- expected_output="' Paris'",
- expected_loss=0.1,
- )
- def call(
- self,
- input_ids: TFModelInputType | None = None,
- attention_mask: np.ndarray | tf.Tensor | None = None,
- token_type_ids: np.ndarray | tf.Tensor | None = None,
- position_ids: np.ndarray | tf.Tensor | None = None,
- head_mask: np.ndarray | tf.Tensor | None = None,
- inputs_embeds: np.ndarray | tf.Tensor | None = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- labels: np.ndarray | tf.Tensor | None = None,
- training: Optional[bool] = False,
- ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
- r"""
- labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
- config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
- loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
- """
- outputs = self.roberta(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- training=training,
- )
- sequence_output = outputs[0]
- prediction_scores = self.lm_head(sequence_output)
- loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
- if not return_dict:
- output = (prediction_scores,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return TFMaskedLMOutput(
- loss=loss,
- logits=prediction_scores,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "roberta", None) is not None:
- with tf.name_scope(self.roberta.name):
- self.roberta.build(None)
- if getattr(self, "lm_head", None) is not None:
- with tf.name_scope(self.lm_head.name):
- self.lm_head.build(None)
- class TFRobertaForCausalLM(TFRobertaPreTrainedModel, TFCausalLanguageModelingLoss):
- # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
- _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head.decoder.weight"]
- def __init__(self, config: RobertaConfig, *inputs, **kwargs):
- super().__init__(config, *inputs, **kwargs)
- if not config.is_decoder:
- logger.warning("If you want to use `TFRobertaLMHeadModel` as a standalone, add `is_decoder=True.`")
- self.roberta = TFRobertaMainLayer(config, add_pooling_layer=False, name="roberta")
- self.lm_head = TFRobertaLMHead(config, input_embeddings=self.roberta.embeddings, name="lm_head")
- def get_lm_head(self):
- return self.lm_head
- def get_prefix_bias_name(self):
- warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
- return self.name + "/" + self.lm_head.name
- # Copied from transformers.models.bert.modeling_tf_bert.TFBertLMHeadModel.prepare_inputs_for_generation
- def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
- input_shape = input_ids.shape
- # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
- if attention_mask is None:
- attention_mask = tf.ones(input_shape)
- # cut decoder_input_ids if past is used
- if past_key_values is not None:
- input_ids = input_ids[:, -1:]
- return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
- @unpack_inputs
- @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=TFCausalLMOutputWithCrossAttentions,
- config_class=_CONFIG_FOR_DOC,
- )
- def call(
- self,
- input_ids: TFModelInputType | None = None,
- attention_mask: np.ndarray | tf.Tensor | None = None,
- token_type_ids: np.ndarray | tf.Tensor | None = None,
- position_ids: np.ndarray | tf.Tensor | None = None,
- head_mask: np.ndarray | tf.Tensor | None = None,
- inputs_embeds: np.ndarray | tf.Tensor | None = None,
- encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
- encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
- past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- labels: np.ndarray | tf.Tensor | None = None,
- training: Optional[bool] = False,
- ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]:
- r"""
- encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
- the model is configured as a decoder.
- encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
- the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
- contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
- use_cache (`bool`, *optional*, defaults to `True`):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
- `past_key_values`). Set to `False` during training, `True` during generation
- labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,
- config.vocab_size - 1]`.
- """
- outputs = self.roberta(
- input_ids=input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- past_key_values=past_key_values,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- training=training,
- )
- sequence_output = outputs[0]
- logits = self.lm_head(hidden_states=sequence_output, training=training)
- loss = None
- if labels is not None:
- # shift labels to the left and cut last logit token
- shifted_logits = logits[:, :-1]
- labels = labels[:, 1:]
- loss = self.hf_compute_loss(labels=labels, logits=shifted_logits)
- if not return_dict:
- output = (logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return TFCausalLMOutputWithCrossAttentions(
- loss=loss,
- logits=logits,
- past_key_values=outputs.past_key_values,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- cross_attentions=outputs.cross_attentions,
- )
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "roberta", None) is not None:
- with tf.name_scope(self.roberta.name):
- self.roberta.build(None)
- if getattr(self, "lm_head", None) is not None:
- with tf.name_scope(self.lm_head.name):
- self.lm_head.build(None)
- class TFRobertaClassificationHead(keras.layers.Layer):
- """Head for sentence-level classification tasks."""
- def __init__(self, config, **kwargs):
- super().__init__(**kwargs)
- self.dense = keras.layers.Dense(
- config.hidden_size,
- kernel_initializer=get_initializer(config.initializer_range),
- activation="tanh",
- name="dense",
- )
- classifier_dropout = (
- config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
- )
- self.dropout = keras.layers.Dropout(classifier_dropout)
- self.out_proj = keras.layers.Dense(
- config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj"
- )
- self.config = config
- def call(self, features, training=False):
- x = features[:, 0, :] # take <s> token (equiv. to [CLS])
- x = self.dropout(x, training=training)
- x = self.dense(x)
- x = self.dropout(x, training=training)
- x = self.out_proj(x)
- return x
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "dense", None) is not None:
- with tf.name_scope(self.dense.name):
- self.dense.build([None, None, self.config.hidden_size])
- if getattr(self, "out_proj", None) is not None:
- with tf.name_scope(self.out_proj.name):
- self.out_proj.build([None, None, self.config.hidden_size])
- @add_start_docstrings(
- """
- RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
- pooled output) e.g. for GLUE tasks.
- """,
- ROBERTA_START_DOCSTRING,
- )
- class TFRobertaForSequenceClassification(TFRobertaPreTrainedModel, TFSequenceClassificationLoss):
- # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
- _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"]
- def __init__(self, config, *inputs, **kwargs):
- super().__init__(config, *inputs, **kwargs)
- self.num_labels = config.num_labels
- self.roberta = TFRobertaMainLayer(config, add_pooling_layer=False, name="roberta")
- self.classifier = TFRobertaClassificationHead(config, name="classifier")
- @unpack_inputs
- @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint="cardiffnlp/twitter-roberta-base-emotion",
- output_type=TFSequenceClassifierOutput,
- config_class=_CONFIG_FOR_DOC,
- expected_output="'optimism'",
- expected_loss=0.08,
- )
- def call(
- self,
- input_ids: TFModelInputType | None = None,
- attention_mask: np.ndarray | tf.Tensor | None = None,
- token_type_ids: np.ndarray | tf.Tensor | None = None,
- position_ids: np.ndarray | tf.Tensor | None = None,
- head_mask: np.ndarray | tf.Tensor | None = None,
- inputs_embeds: np.ndarray | tf.Tensor | None = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- labels: np.ndarray | tf.Tensor | None = None,
- training: Optional[bool] = False,
- ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
- r"""
- labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- outputs = self.roberta(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- training=training,
- )
- sequence_output = outputs[0]
- logits = self.classifier(sequence_output, training=training)
- loss = None if labels is None else self.hf_compute_loss(labels, logits)
- if not return_dict:
- output = (logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return TFSequenceClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "roberta", None) is not None:
- with tf.name_scope(self.roberta.name):
- self.roberta.build(None)
- if getattr(self, "classifier", None) is not None:
- with tf.name_scope(self.classifier.name):
- self.classifier.build(None)
- @add_start_docstrings(
- """
- Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
- softmax) e.g. for RocStories/SWAG tasks.
- """,
- ROBERTA_START_DOCSTRING,
- )
- class TFRobertaForMultipleChoice(TFRobertaPreTrainedModel, TFMultipleChoiceLoss):
- # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
- _keys_to_ignore_on_load_unexpected = [r"lm_head"]
- _keys_to_ignore_on_load_missing = [r"dropout"]
- def __init__(self, config, *inputs, **kwargs):
- super().__init__(config, *inputs, **kwargs)
- self.roberta = TFRobertaMainLayer(config, name="roberta")
- self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
- self.classifier = keras.layers.Dense(
- 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
- )
- self.config = config
- @unpack_inputs
- @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=TFMultipleChoiceModelOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def call(
- self,
- input_ids: TFModelInputType | None = None,
- attention_mask: np.ndarray | tf.Tensor | None = None,
- token_type_ids: np.ndarray | tf.Tensor | None = None,
- position_ids: np.ndarray | tf.Tensor | None = None,
- head_mask: np.ndarray | tf.Tensor | None = None,
- inputs_embeds: np.ndarray | tf.Tensor | None = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- labels: np.ndarray | tf.Tensor | None = None,
- training: Optional[bool] = False,
- ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
- r"""
- labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
- where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
- """
- if input_ids is not None:
- num_choices = shape_list(input_ids)[1]
- seq_length = shape_list(input_ids)[2]
- else:
- num_choices = shape_list(inputs_embeds)[1]
- seq_length = shape_list(inputs_embeds)[2]
- flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
- flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
- flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
- flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
- outputs = self.roberta(
- flat_input_ids,
- flat_attention_mask,
- flat_token_type_ids,
- flat_position_ids,
- head_mask,
- inputs_embeds,
- output_attentions,
- output_hidden_states,
- return_dict=return_dict,
- training=training,
- )
- pooled_output = outputs[1]
- pooled_output = self.dropout(pooled_output, training=training)
- logits = self.classifier(pooled_output)
- reshaped_logits = tf.reshape(logits, (-1, num_choices))
- loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
- if not return_dict:
- output = (reshaped_logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return TFMultipleChoiceModelOutput(
- loss=loss,
- logits=reshaped_logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "roberta", None) is not None:
- with tf.name_scope(self.roberta.name):
- self.roberta.build(None)
- if getattr(self, "classifier", None) is not None:
- with tf.name_scope(self.classifier.name):
- self.classifier.build([None, None, self.config.hidden_size])
- @add_start_docstrings(
- """
- RoBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
- Named-Entity-Recognition (NER) tasks.
- """,
- ROBERTA_START_DOCSTRING,
- )
- class TFRobertaForTokenClassification(TFRobertaPreTrainedModel, TFTokenClassificationLoss):
- # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
- _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"]
- _keys_to_ignore_on_load_missing = [r"dropout"]
- def __init__(self, config, *inputs, **kwargs):
- super().__init__(config, *inputs, **kwargs)
- self.num_labels = config.num_labels
- self.roberta = TFRobertaMainLayer(config, add_pooling_layer=False, name="roberta")
- classifier_dropout = (
- config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
- )
- self.dropout = keras.layers.Dropout(classifier_dropout)
- self.classifier = keras.layers.Dense(
- config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
- )
- self.config = config
- @unpack_inputs
- @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint="ydshieh/roberta-large-ner-english",
- output_type=TFTokenClassifierOutput,
- config_class=_CONFIG_FOR_DOC,
- expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']",
- expected_loss=0.01,
- )
- def call(
- self,
- input_ids: TFModelInputType | None = None,
- attention_mask: np.ndarray | tf.Tensor | None = None,
- token_type_ids: np.ndarray | tf.Tensor | None = None,
- position_ids: np.ndarray | tf.Tensor | None = None,
- head_mask: np.ndarray | tf.Tensor | None = None,
- inputs_embeds: np.ndarray | tf.Tensor | None = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- labels: np.ndarray | tf.Tensor | None = None,
- training: Optional[bool] = False,
- ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
- r"""
- labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
- """
- outputs = self.roberta(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- training=training,
- )
- sequence_output = outputs[0]
- sequence_output = self.dropout(sequence_output, training=training)
- logits = self.classifier(sequence_output)
- loss = None if labels is None else self.hf_compute_loss(labels, logits)
- if not return_dict:
- output = (logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return TFTokenClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "roberta", None) is not None:
- with tf.name_scope(self.roberta.name):
- self.roberta.build(None)
- if getattr(self, "classifier", None) is not None:
- with tf.name_scope(self.classifier.name):
- self.classifier.build([None, None, self.config.hidden_size])
- @add_start_docstrings(
- """
- RoBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
- layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
- """,
- ROBERTA_START_DOCSTRING,
- )
- class TFRobertaForQuestionAnswering(TFRobertaPreTrainedModel, TFQuestionAnsweringLoss):
- # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
- _keys_to_ignore_on_load_unexpected = [r"pooler", r"lm_head"]
- def __init__(self, config, *inputs, **kwargs):
- super().__init__(config, *inputs, **kwargs)
- self.num_labels = config.num_labels
- self.roberta = TFRobertaMainLayer(config, add_pooling_layer=False, name="roberta")
- self.qa_outputs = keras.layers.Dense(
- config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
- )
- self.config = config
- @unpack_inputs
- @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint="ydshieh/roberta-base-squad2",
- output_type=TFQuestionAnsweringModelOutput,
- config_class=_CONFIG_FOR_DOC,
- expected_output="' puppet'",
- expected_loss=0.86,
- )
- def call(
- self,
- input_ids: TFModelInputType | None = None,
- attention_mask: np.ndarray | tf.Tensor | None = None,
- token_type_ids: np.ndarray | tf.Tensor | None = None,
- position_ids: np.ndarray | tf.Tensor | None = None,
- head_mask: np.ndarray | tf.Tensor | None = None,
- inputs_embeds: np.ndarray | tf.Tensor | None = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- start_positions: np.ndarray | tf.Tensor | None = None,
- end_positions: np.ndarray | tf.Tensor | None = None,
- training: Optional[bool] = False,
- ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
- r"""
- start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the start of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the end of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- """
- outputs = self.roberta(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- training=training,
- )
- sequence_output = outputs[0]
- logits = self.qa_outputs(sequence_output)
- start_logits, end_logits = tf.split(logits, 2, axis=-1)
- start_logits = tf.squeeze(start_logits, axis=-1)
- end_logits = tf.squeeze(end_logits, axis=-1)
- loss = None
- if start_positions is not None and end_positions is not None:
- labels = {"start_position": start_positions}
- labels["end_position"] = end_positions
- loss = self.hf_compute_loss(labels, (start_logits, end_logits))
- if not return_dict:
- output = (start_logits, end_logits) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return TFQuestionAnsweringModelOutput(
- loss=loss,
- start_logits=start_logits,
- end_logits=end_logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "roberta", None) is not None:
- with tf.name_scope(self.roberta.name):
- self.roberta.build(None)
- if getattr(self, "qa_outputs", None) is not None:
- with tf.name_scope(self.qa_outputs.name):
- self.qa_outputs.build([None, None, self.config.hidden_size])
|