| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 |
- # coding=utf-8
- # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """SAM model configuration"""
- from ...configuration_utils import PretrainedConfig
- from ...utils import logging
- logger = logging.get_logger(__name__)
- class SamPromptEncoderConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`SamPromptEncoder`]. The [`SamPromptEncoder`]
- module is used to encode the input 2D points and bounding boxes. Instantiating a configuration defaults will yield
- a similar configuration to that of the SAM-vit-h
- [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- hidden_size (`int`, *optional*, defaults to 256):
- Dimensionality of the hidden states.
- image_size (`int`, *optional*, defaults to 1024):
- The expected output resolution of the image.
- patch_size (`int`, *optional*, defaults to 16):
- The size (resolution) of each patch.
- mask_input_channels (`int`, *optional*, defaults to 16):
- The number of channels to be fed to the `MaskDecoder` module.
- num_point_embeddings (`int`, *optional*, defaults to 4):
- The number of point embeddings to be used.
- hidden_act (`str`, *optional*, defaults to `"gelu"`):
- The non-linear activation function in the encoder and pooler.
- """
- def __init__(
- self,
- hidden_size=256,
- image_size=1024,
- patch_size=16,
- mask_input_channels=16,
- num_point_embeddings=4,
- hidden_act="gelu",
- layer_norm_eps=1e-6,
- **kwargs,
- ):
- super().__init__(**kwargs)
- self.hidden_size = hidden_size
- self.image_size = image_size
- self.patch_size = patch_size
- self.image_embedding_size = image_size // patch_size
- self.mask_input_channels = mask_input_channels
- self.num_point_embeddings = num_point_embeddings
- self.hidden_act = hidden_act
- self.layer_norm_eps = layer_norm_eps
- class SamMaskDecoderConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`SamMaskDecoder`]. It is used to instantiate a SAM
- mask decoder to the specified arguments, defining the model architecture. Instantiating a configuration defaults
- will yield a similar configuration to that of the SAM-vit-h
- [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- hidden_size (`int`, *optional*, defaults to 256):
- Dimensionality of the hidden states.
- hidden_act (`str`, *optional*, defaults to `"relu"`):
- The non-linear activation function used inside the `SamMaskDecoder` module.
- mlp_dim (`int`, *optional*, defaults to 2048):
- Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
- num_hidden_layers (`int`, *optional*, defaults to 2):
- Number of hidden layers in the Transformer encoder.
- num_attention_heads (`int`, *optional*, defaults to 8):
- Number of attention heads for each attention layer in the Transformer encoder.
- attention_downsample_rate (`int`, *optional*, defaults to 2):
- The downsampling rate of the attention layer.
- num_multimask_outputs (`int`, *optional*, defaults to 3):
- The number of outputs from the `SamMaskDecoder` module. In the Segment Anything paper, this is set to 3.
- iou_head_depth (`int`, *optional*, defaults to 3):
- The number of layers in the IoU head module.
- iou_head_hidden_dim (`int`, *optional*, defaults to 256):
- The dimensionality of the hidden states in the IoU head module.
- layer_norm_eps (`float`, *optional*, defaults to 1e-06):
- The epsilon used by the layer normalization layers.
- """
- def __init__(
- self,
- hidden_size=256,
- hidden_act="relu",
- mlp_dim=2048,
- num_hidden_layers=2,
- num_attention_heads=8,
- attention_downsample_rate=2,
- num_multimask_outputs=3,
- iou_head_depth=3,
- iou_head_hidden_dim=256,
- layer_norm_eps=1e-6,
- **kwargs,
- ):
- super().__init__(**kwargs)
- self.hidden_size = hidden_size
- self.hidden_act = hidden_act
- self.mlp_dim = mlp_dim
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.attention_downsample_rate = attention_downsample_rate
- self.num_multimask_outputs = num_multimask_outputs
- self.iou_head_depth = iou_head_depth
- self.iou_head_hidden_dim = iou_head_hidden_dim
- self.layer_norm_eps = layer_norm_eps
- class SamVisionConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`SamVisionModel`]. It is used to instantiate a SAM
- vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
- defaults will yield a similar configuration to that of the SAM ViT-h
- [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- hidden_size (`int`, *optional*, defaults to 768):
- Dimensionality of the encoder layers and the pooler layer.
- output_channels (`int`, *optional*, defaults to 256):
- Dimensionality of the output channels in the Patch Encoder.
- num_hidden_layers (`int`, *optional*, defaults to 12):
- Number of hidden layers in the Transformer encoder.
- num_attention_heads (`int`, *optional*, defaults to 12):
- Number of attention heads for each attention layer in the Transformer encoder.
- num_channels (`int`, *optional*, defaults to 3):
- Number of channels in the input image.
- image_size (`int`, *optional*, defaults to 1024):
- Expected resolution. Target size of the resized input image.
- patch_size (`int`, *optional*, defaults to 16):
- Size of the patches to be extracted from the input image.
- hidden_act (`str`, *optional*, defaults to `"gelu"`):
- The non-linear activation function (function or string)
- layer_norm_eps (`float`, *optional*, defaults to 1e-06):
- The epsilon used by the layer normalization layers.
- attention_dropout (`float`, *optional*, defaults to 0.0):
- The dropout ratio for the attention probabilities.
- initializer_range (`float`, *optional*, defaults to 1e-10):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- qkv_bias (`bool`, *optional*, defaults to `True`):
- Whether to add a bias to query, key, value projections.
- mlp_ratio (`float`, *optional*, defaults to 4.0):
- Ratio of mlp hidden dim to embedding dim.
- use_abs_pos (`bool`, *optional*, defaults to `True`):
- Whether to use absolute position embedding.
- use_rel_pos (`bool`, *optional*, defaults to `True`):
- Whether to use relative position embedding.
- window_size (`int`, *optional*, defaults to 14):
- Window size for relative position.
- global_attn_indexes (`List[int]`, *optional*, defaults to `[2, 5, 8, 11]`):
- The indexes of the global attention layers.
- num_pos_feats (`int`, *optional*, defaults to 128):
- The dimensionality of the position embedding.
- mlp_dim (`int`, *optional*):
- The dimensionality of the MLP layer in the Transformer encoder. If `None`, defaults to `mlp_ratio *
- hidden_size`.
- """
- def __init__(
- self,
- hidden_size=768,
- output_channels=256,
- num_hidden_layers=12,
- num_attention_heads=12,
- num_channels=3,
- image_size=1024,
- patch_size=16,
- hidden_act="gelu",
- layer_norm_eps=1e-06,
- attention_dropout=0.0,
- initializer_range=1e-10,
- qkv_bias=True,
- mlp_ratio=4.0,
- use_abs_pos=True,
- use_rel_pos=True,
- window_size=14,
- global_attn_indexes=[2, 5, 8, 11],
- num_pos_feats=128,
- mlp_dim=None,
- **kwargs,
- ):
- super().__init__(**kwargs)
- self.hidden_size = hidden_size
- self.output_channels = output_channels
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.num_channels = num_channels
- self.image_size = image_size
- self.patch_size = patch_size
- self.hidden_act = hidden_act
- self.layer_norm_eps = layer_norm_eps
- self.attention_dropout = attention_dropout
- self.initializer_range = initializer_range
- self.qkv_bias = qkv_bias
- self.mlp_ratio = mlp_ratio
- self.use_abs_pos = use_abs_pos
- self.use_rel_pos = use_rel_pos
- self.window_size = window_size
- self.global_attn_indexes = global_attn_indexes
- self.num_pos_feats = num_pos_feats
- self.mlp_dim = int(hidden_size * mlp_ratio) if mlp_dim is None else mlp_dim
- class SamConfig(PretrainedConfig):
- r"""
- [`SamConfig`] is the configuration class to store the configuration of a [`SamModel`]. It is used to instantiate a
- SAM model according to the specified arguments, defining the vision model, prompt-encoder model and mask decoder
- configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the
- SAM-ViT-H [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- vision_config (Union[`dict`, `SamVisionConfig`], *optional*):
- Dictionary of configuration options used to initialize [`SamVisionConfig`].
- prompt_encoder_config (Union[`dict`, `SamPromptEncoderConfig`], *optional*):
- Dictionary of configuration options used to initialize [`SamPromptEncoderConfig`].
- mask_decoder_config (Union[`dict`, `SamMaskDecoderConfig`], *optional*):
- Dictionary of configuration options used to initialize [`SamMaskDecoderConfig`].
- kwargs (*optional*):
- Dictionary of keyword arguments.
- Example:
- ```python
- >>> from transformers import (
- ... SamVisionConfig,
- ... SamPromptEncoderConfig,
- ... SamMaskDecoderConfig,
- ... SamModel,
- ... )
- >>> # Initializing a SamConfig with `"facebook/sam-vit-huge"` style configuration
- >>> configuration = SamConfig()
- >>> # Initializing a SamModel (with random weights) from the `"facebook/sam-vit-huge"` style configuration
- >>> model = SamModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- >>> # We can also initialize a SamConfig from a SamVisionConfig, SamPromptEncoderConfig, and SamMaskDecoderConfig
- >>> # Initializing SAM vision, SAM Q-Former and language model configurations
- >>> vision_config = SamVisionConfig()
- >>> prompt_encoder_config = SamPromptEncoderConfig()
- >>> mask_decoder_config = SamMaskDecoderConfig()
- >>> config = SamConfig(vision_config, prompt_encoder_config, mask_decoder_config)
- ```"""
- model_type = "sam"
- def __init__(
- self,
- vision_config=None,
- prompt_encoder_config=None,
- mask_decoder_config=None,
- initializer_range=0.02,
- **kwargs,
- ):
- super().__init__(**kwargs)
- vision_config = vision_config if vision_config is not None else {}
- prompt_encoder_config = prompt_encoder_config if prompt_encoder_config is not None else {}
- mask_decoder_config = mask_decoder_config if mask_decoder_config is not None else {}
- if isinstance(vision_config, SamVisionConfig):
- vision_config = vision_config.to_dict()
- if isinstance(prompt_encoder_config, SamPromptEncoderConfig):
- prompt_encoder_config = prompt_encoder_config.to_dict()
- if isinstance(mask_decoder_config, SamMaskDecoderConfig):
- mask_decoder_config = mask_decoder_config.to_dict()
- self.vision_config = SamVisionConfig(**vision_config)
- self.prompt_encoder_config = SamPromptEncoderConfig(**prompt_encoder_config)
- self.mask_decoder_config = SamMaskDecoderConfig(**mask_decoder_config)
- self.initializer_range = initializer_range
|