| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 |
- # coding=utf-8
- # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Speech processor class for SpeechT5."""
- from ...processing_utils import ProcessorMixin
- class SpeechT5Processor(ProcessorMixin):
- r"""
- Constructs a SpeechT5 processor which wraps a feature extractor and a tokenizer into a single processor.
- [`SpeechT5Processor`] offers all the functionalities of [`SpeechT5FeatureExtractor`] and [`SpeechT5Tokenizer`]. See
- the docstring of [`~SpeechT5Processor.__call__`] and [`~SpeechT5Processor.decode`] for more information.
- Args:
- feature_extractor (`SpeechT5FeatureExtractor`):
- An instance of [`SpeechT5FeatureExtractor`]. The feature extractor is a required input.
- tokenizer (`SpeechT5Tokenizer`):
- An instance of [`SpeechT5Tokenizer`]. The tokenizer is a required input.
- """
- feature_extractor_class = "SpeechT5FeatureExtractor"
- tokenizer_class = "SpeechT5Tokenizer"
- def __init__(self, feature_extractor, tokenizer):
- super().__init__(feature_extractor, tokenizer)
- def __call__(self, *args, **kwargs):
- """
- Processes audio and text input, as well as audio and text targets.
- You can process audio by using the argument `audio`, or process audio targets by using the argument
- `audio_target`. This forwards the arguments to SpeechT5FeatureExtractor's
- [`~SpeechT5FeatureExtractor.__call__`].
- You can process text by using the argument `text`, or process text labels by using the argument `text_target`.
- This forwards the arguments to SpeechT5Tokenizer's [`~SpeechT5Tokenizer.__call__`].
- Valid input combinations are:
- - `text` only
- - `audio` only
- - `text_target` only
- - `audio_target` only
- - `text` and `audio_target`
- - `audio` and `audio_target`
- - `text` and `text_target`
- - `audio` and `text_target`
- Please refer to the docstring of the above two methods for more information.
- """
- audio = kwargs.pop("audio", None)
- text = kwargs.pop("text", None)
- text_target = kwargs.pop("text_target", None)
- audio_target = kwargs.pop("audio_target", None)
- sampling_rate = kwargs.pop("sampling_rate", None)
- if audio is not None and text is not None:
- raise ValueError(
- "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?"
- )
- if audio_target is not None and text_target is not None:
- raise ValueError(
- "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?"
- )
- if audio is None and audio_target is None and text is None and text_target is None:
- raise ValueError(
- "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process."
- )
- if audio is not None:
- inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
- elif text is not None:
- inputs = self.tokenizer(text, **kwargs)
- else:
- inputs = None
- if audio_target is not None:
- targets = self.feature_extractor(audio_target=audio_target, *args, sampling_rate=sampling_rate, **kwargs)
- labels = targets["input_values"]
- elif text_target is not None:
- targets = self.tokenizer(text_target, **kwargs)
- labels = targets["input_ids"]
- else:
- targets = None
- if inputs is None:
- return targets
- if targets is not None:
- inputs["labels"] = labels
- decoder_attention_mask = targets.get("attention_mask")
- if decoder_attention_mask is not None:
- inputs["decoder_attention_mask"] = decoder_attention_mask
- return inputs
- def pad(self, *args, **kwargs):
- """
- Collates the audio and text inputs, as well as their targets, into a padded batch.
- Audio inputs are padded by SpeechT5FeatureExtractor's [`~SpeechT5FeatureExtractor.pad`]. Text inputs are padded
- by SpeechT5Tokenizer's [`~SpeechT5Tokenizer.pad`].
- Valid input combinations are:
- - `input_ids` only
- - `input_values` only
- - `labels` only, either log-mel spectrograms or text tokens
- - `input_ids` and log-mel spectrogram `labels`
- - `input_values` and text `labels`
- Please refer to the docstring of the above two methods for more information.
- """
- input_values = kwargs.pop("input_values", None)
- input_ids = kwargs.pop("input_ids", None)
- labels = kwargs.pop("labels", None)
- if input_values is not None and input_ids is not None:
- raise ValueError("Cannot process both `input_values` and `input_ids` inputs.")
- if input_values is None and input_ids is None and labels is None:
- raise ValueError(
- "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded."
- )
- if input_values is not None:
- inputs = self.feature_extractor.pad(input_values, *args, **kwargs)
- elif input_ids is not None:
- inputs = self.tokenizer.pad(input_ids, **kwargs)
- else:
- inputs = None
- if labels is not None:
- if "input_ids" in labels or (isinstance(labels, list) and "input_ids" in labels[0]):
- targets = self.tokenizer.pad(labels, **kwargs)
- labels = targets["input_ids"]
- else:
- feature_size_hack = self.feature_extractor.feature_size
- self.feature_extractor.feature_size = self.feature_extractor.num_mel_bins
- targets = self.feature_extractor.pad(labels, *args, **kwargs)
- self.feature_extractor.feature_size = feature_size_hack
- labels = targets["input_values"]
- else:
- targets = None
- if inputs is None:
- return targets
- if targets is not None:
- inputs["labels"] = labels
- decoder_attention_mask = targets.get("attention_mask")
- if decoder_attention_mask is not None:
- inputs["decoder_attention_mask"] = decoder_attention_mask
- return inputs
- def batch_decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to SpeechT5Tokenizer's [`~SpeechT5Tokenizer.batch_decode`]. Please refer
- to the docstring of this method for more information.
- """
- return self.tokenizer.batch_decode(*args, **kwargs)
- def decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to SpeechT5Tokenizer's [`~SpeechT5Tokenizer.decode`]. Please refer to
- the docstring of this method for more information.
- """
- return self.tokenizer.decode(*args, **kwargs)
|