| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- # coding=utf-8
- # Copyright 2021 Tel AViv University, AllenAI and The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Fast Tokenization classes for Splinter."""
- import json
- from typing import List, Optional, Tuple
- from tokenizers import normalizers
- from ...tokenization_utils_fast import PreTrainedTokenizerFast
- from ...utils import logging
- from .tokenization_splinter import SplinterTokenizer
- logger = logging.get_logger(__name__)
- VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
- class SplinterTokenizerFast(PreTrainedTokenizerFast):
- r"""
- Construct a "fast" Splinter tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
- This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
- refer to this superclass for more information regarding those methods.
- Args:
- vocab_file (`str`):
- File containing the vocabulary.
- do_lower_case (`bool`, *optional*, defaults to `True`):
- Whether or not to lowercase the input when tokenizing.
- unk_token (`str`, *optional*, defaults to `"[UNK]"`):
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
- token instead.
- sep_token (`str`, *optional*, defaults to `"[SEP]"`):
- The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
- sequence classification or for a text and a question for question answering. It is also used as the last
- token of a sequence built with special tokens.
- pad_token (`str`, *optional*, defaults to `"[PAD]"`):
- The token used for padding, for example when batching sequences of different lengths.
- cls_token (`str`, *optional*, defaults to `"[CLS]"`):
- The classifier token which is used when doing sequence classification (classification of the whole sequence
- instead of per-token classification). It is the first token of the sequence when built with special tokens.
- mask_token (`str`, *optional*, defaults to `"[MASK]"`):
- The token used for masking values. This is the token used when training this model with masked language
- modeling. This is the token which the model will try to predict.
- question_token (`str`, *optional*, defaults to `"[QUESTION]"`):
- The token used for constructing question representations.
- clean_text (`bool`, *optional*, defaults to `True`):
- Whether or not to clean the text before tokenization by removing any control characters and replacing all
- whitespaces by the classic one.
- tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
- Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
- issue](https://github.com/huggingface/transformers/issues/328)).
- strip_accents (`bool`, *optional*):
- Whether or not to strip all accents. If this option is not specified, then it will be determined by the
- value for `lowercase` (as in the original BERT).
- wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
- The prefix for subwords.
- """
- vocab_files_names = VOCAB_FILES_NAMES
- slow_tokenizer_class = SplinterTokenizer
- def __init__(
- self,
- vocab_file=None,
- tokenizer_file=None,
- do_lower_case=True,
- unk_token="[UNK]",
- sep_token="[SEP]",
- pad_token="[PAD]",
- cls_token="[CLS]",
- mask_token="[MASK]",
- question_token="[QUESTION]",
- tokenize_chinese_chars=True,
- strip_accents=None,
- **kwargs,
- ):
- super().__init__(
- vocab_file,
- tokenizer_file=tokenizer_file,
- do_lower_case=do_lower_case,
- unk_token=unk_token,
- sep_token=sep_token,
- pad_token=pad_token,
- cls_token=cls_token,
- mask_token=mask_token,
- tokenize_chinese_chars=tokenize_chinese_chars,
- strip_accents=strip_accents,
- additional_special_tokens=(question_token,),
- **kwargs,
- )
- pre_tok_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
- if (
- pre_tok_state.get("lowercase", do_lower_case) != do_lower_case
- or pre_tok_state.get("strip_accents", strip_accents) != strip_accents
- ):
- pre_tok_class = getattr(normalizers, pre_tok_state.pop("type"))
- pre_tok_state["lowercase"] = do_lower_case
- pre_tok_state["strip_accents"] = strip_accents
- self.backend_tokenizer.normalizer = pre_tok_class(**pre_tok_state)
- self.do_lower_case = do_lower_case
- @property
- def question_token_id(self):
- """
- `Optional[int]`: Id of the question token in the vocabulary, used to condition the answer on a question
- representation.
- """
- return self.convert_tokens_to_ids(self.question_token)
- def build_inputs_with_special_tokens(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Build model inputs from a pair of sequence for question answering tasks by concatenating and adding special
- tokens. A Splinter sequence has the following format:
- - single sequence: `[CLS] X [SEP]`
- - pair of sequences for question answering: `[CLS] question_tokens [QUESTION] . [SEP] context_tokens [SEP]`
- Args:
- token_ids_0 (`List[int]`):
- The question token IDs if pad_on_right, else context tokens IDs
- token_ids_1 (`List[int]`, *optional*):
- The context token IDs if pad_on_right, else question token IDs
- Returns:
- `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
- """
- if token_ids_1 is None:
- return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
- cls = [self.cls_token_id]
- sep = [self.sep_token_id]
- question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")]
- if self.padding_side == "right":
- # Input is question-then-context
- return cls + token_ids_0 + question_suffix + sep + token_ids_1 + sep
- else:
- # Input is context-then-question
- return cls + token_ids_0 + sep + token_ids_1 + question_suffix + sep
- def create_token_type_ids_from_sequences(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Create the token type IDs corresponding to the sequences passed. [What are token type
- IDs?](../glossary#token-type-ids)
- Should be overridden in a subclass if the model has a special way of building those.
- Args:
- token_ids_0 (`List[int]`): The first tokenized sequence.
- token_ids_1 (`List[int]`, *optional*): The second tokenized sequence.
- Returns:
- `List[int]`: The token type ids.
- """
- sep = [self.sep_token_id]
- cls = [self.cls_token_id]
- question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids(".")]
- if token_ids_1 is None:
- return len(cls + token_ids_0 + sep) * [0]
- if self.padding_side == "right":
- # Input is question-then-context
- return len(cls + token_ids_0 + question_suffix + sep) * [0] + len(token_ids_1 + sep) * [1]
- else:
- # Input is context-then-question
- return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + question_suffix + sep) * [1]
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
- files = self._tokenizer.model.save(save_directory, name=filename_prefix)
- return tuple(files)
|