| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087 |
- # coding=utf-8
- # Copyright 2020 The SqueezeBert authors and The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch SqueezeBert model."""
- import math
- from typing import Optional, Tuple, Union
- import torch
- from torch import nn
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
- from ...activations import ACT2FN
- from ...modeling_outputs import (
- BaseModelOutput,
- BaseModelOutputWithPooling,
- MaskedLMOutput,
- MultipleChoiceModelOutput,
- QuestionAnsweringModelOutput,
- SequenceClassifierOutput,
- TokenClassifierOutput,
- )
- from ...modeling_utils import PreTrainedModel
- from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
- from .configuration_squeezebert import SqueezeBertConfig
- logger = logging.get_logger(__name__)
- _CHECKPOINT_FOR_DOC = "squeezebert/squeezebert-uncased"
- _CONFIG_FOR_DOC = "SqueezeBertConfig"
- class SqueezeBertEmbeddings(nn.Module):
- """Construct the embeddings from word, position and token_type embeddings."""
- def __init__(self, config):
- super().__init__()
- self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
- self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
- self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
- # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
- # any TensorFlow checkpoint file
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- # position_ids (1, len position emb) is contiguous in memory and exported when serialized
- self.register_buffer(
- "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
- )
- def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
- if input_ids is not None:
- input_shape = input_ids.size()
- else:
- input_shape = inputs_embeds.size()[:-1]
- seq_length = input_shape[1]
- if position_ids is None:
- position_ids = self.position_ids[:, :seq_length]
- if token_type_ids is None:
- token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
- if inputs_embeds is None:
- inputs_embeds = self.word_embeddings(input_ids)
- position_embeddings = self.position_embeddings(position_ids)
- token_type_embeddings = self.token_type_embeddings(token_type_ids)
- embeddings = inputs_embeds + position_embeddings + token_type_embeddings
- embeddings = self.LayerNorm(embeddings)
- embeddings = self.dropout(embeddings)
- return embeddings
- class MatMulWrapper(nn.Module):
- """
- Wrapper for torch.matmul(). This makes flop-counting easier to implement. Note that if you directly call
- torch.matmul() in your code, the flop counter will typically ignore the flops of the matmul.
- """
- def __init__(self):
- super().__init__()
- def forward(self, mat1, mat2):
- """
- :param inputs: two torch tensors :return: matmul of these tensors
- Here are the typical dimensions found in BERT (the B is optional) mat1.shape: [B, <optional extra dims>, M, K]
- mat2.shape: [B, <optional extra dims>, K, N] output shape: [B, <optional extra dims>, M, N]
- """
- return torch.matmul(mat1, mat2)
- class SqueezeBertLayerNorm(nn.LayerNorm):
- """
- This is a nn.LayerNorm subclass that accepts NCW data layout and performs normalization in the C dimension.
- N = batch C = channels W = sequence length
- """
- def __init__(self, hidden_size, eps=1e-12):
- nn.LayerNorm.__init__(self, normalized_shape=hidden_size, eps=eps) # instantiates self.{weight, bias, eps}
- def forward(self, x):
- x = x.permute(0, 2, 1)
- x = nn.LayerNorm.forward(self, x)
- return x.permute(0, 2, 1)
- class ConvDropoutLayerNorm(nn.Module):
- """
- ConvDropoutLayerNorm: Conv, Dropout, LayerNorm
- """
- def __init__(self, cin, cout, groups, dropout_prob):
- super().__init__()
- self.conv1d = nn.Conv1d(in_channels=cin, out_channels=cout, kernel_size=1, groups=groups)
- self.layernorm = SqueezeBertLayerNorm(cout)
- self.dropout = nn.Dropout(dropout_prob)
- def forward(self, hidden_states, input_tensor):
- x = self.conv1d(hidden_states)
- x = self.dropout(x)
- x = x + input_tensor
- x = self.layernorm(x)
- return x
- class ConvActivation(nn.Module):
- """
- ConvActivation: Conv, Activation
- """
- def __init__(self, cin, cout, groups, act):
- super().__init__()
- self.conv1d = nn.Conv1d(in_channels=cin, out_channels=cout, kernel_size=1, groups=groups)
- self.act = ACT2FN[act]
- def forward(self, x):
- output = self.conv1d(x)
- return self.act(output)
- class SqueezeBertSelfAttention(nn.Module):
- def __init__(self, config, cin, q_groups=1, k_groups=1, v_groups=1):
- """
- config = used for some things; ignored for others (work in progress...) cin = input channels = output channels
- groups = number of groups to use in conv1d layers
- """
- super().__init__()
- if cin % config.num_attention_heads != 0:
- raise ValueError(
- f"cin ({cin}) is not a multiple of the number of attention heads ({config.num_attention_heads})"
- )
- self.num_attention_heads = config.num_attention_heads
- self.attention_head_size = int(cin / config.num_attention_heads)
- self.all_head_size = self.num_attention_heads * self.attention_head_size
- self.query = nn.Conv1d(in_channels=cin, out_channels=cin, kernel_size=1, groups=q_groups)
- self.key = nn.Conv1d(in_channels=cin, out_channels=cin, kernel_size=1, groups=k_groups)
- self.value = nn.Conv1d(in_channels=cin, out_channels=cin, kernel_size=1, groups=v_groups)
- self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
- self.softmax = nn.Softmax(dim=-1)
- self.matmul_qk = MatMulWrapper()
- self.matmul_qkv = MatMulWrapper()
- def transpose_for_scores(self, x):
- """
- - input: [N, C, W]
- - output: [N, C1, W, C2] where C1 is the head index, and C2 is one head's contents
- """
- new_x_shape = (x.size()[0], self.num_attention_heads, self.attention_head_size, x.size()[-1]) # [N, C1, C2, W]
- x = x.view(*new_x_shape)
- return x.permute(0, 1, 3, 2) # [N, C1, C2, W] --> [N, C1, W, C2]
- def transpose_key_for_scores(self, x):
- """
- - input: [N, C, W]
- - output: [N, C1, C2, W] where C1 is the head index, and C2 is one head's contents
- """
- new_x_shape = (x.size()[0], self.num_attention_heads, self.attention_head_size, x.size()[-1]) # [N, C1, C2, W]
- x = x.view(*new_x_shape)
- # no `permute` needed
- return x
- def transpose_output(self, x):
- """
- - input: [N, C1, W, C2]
- - output: [N, C, W]
- """
- x = x.permute(0, 1, 3, 2).contiguous() # [N, C1, C2, W]
- new_x_shape = (x.size()[0], self.all_head_size, x.size()[3]) # [N, C, W]
- x = x.view(*new_x_shape)
- return x
- def forward(self, hidden_states, attention_mask, output_attentions):
- """
- expects hidden_states in [N, C, W] data layout.
- The attention_mask data layout is [N, W], and it does not need to be transposed.
- """
- mixed_query_layer = self.query(hidden_states)
- mixed_key_layer = self.key(hidden_states)
- mixed_value_layer = self.value(hidden_states)
- query_layer = self.transpose_for_scores(mixed_query_layer)
- key_layer = self.transpose_key_for_scores(mixed_key_layer)
- value_layer = self.transpose_for_scores(mixed_value_layer)
- # Take the dot product between "query" and "key" to get the raw attention scores.
- attention_score = self.matmul_qk(query_layer, key_layer)
- attention_score = attention_score / math.sqrt(self.attention_head_size)
- # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
- attention_score = attention_score + attention_mask
- # Normalize the attention scores to probabilities.
- attention_probs = self.softmax(attention_score)
- # This is actually dropping out entire tokens to attend to, which might
- # seem a bit unusual, but is taken from the original Transformer paper.
- attention_probs = self.dropout(attention_probs)
- context_layer = self.matmul_qkv(attention_probs, value_layer)
- context_layer = self.transpose_output(context_layer)
- result = {"context_layer": context_layer}
- if output_attentions:
- result["attention_score"] = attention_score
- return result
- class SqueezeBertModule(nn.Module):
- def __init__(self, config):
- """
- - hidden_size = input chans = output chans for Q, K, V (they are all the same ... for now) = output chans for
- the module
- - intermediate_size = output chans for intermediate layer
- - groups = number of groups for all layers in the BertModule. (eventually we could change the interface to
- allow different groups for different layers)
- """
- super().__init__()
- c0 = config.hidden_size
- c1 = config.hidden_size
- c2 = config.intermediate_size
- c3 = config.hidden_size
- self.attention = SqueezeBertSelfAttention(
- config=config, cin=c0, q_groups=config.q_groups, k_groups=config.k_groups, v_groups=config.v_groups
- )
- self.post_attention = ConvDropoutLayerNorm(
- cin=c0, cout=c1, groups=config.post_attention_groups, dropout_prob=config.hidden_dropout_prob
- )
- self.intermediate = ConvActivation(cin=c1, cout=c2, groups=config.intermediate_groups, act=config.hidden_act)
- self.output = ConvDropoutLayerNorm(
- cin=c2, cout=c3, groups=config.output_groups, dropout_prob=config.hidden_dropout_prob
- )
- def forward(self, hidden_states, attention_mask, output_attentions):
- att = self.attention(hidden_states, attention_mask, output_attentions)
- attention_output = att["context_layer"]
- post_attention_output = self.post_attention(attention_output, hidden_states)
- intermediate_output = self.intermediate(post_attention_output)
- layer_output = self.output(intermediate_output, post_attention_output)
- output_dict = {"feature_map": layer_output}
- if output_attentions:
- output_dict["attention_score"] = att["attention_score"]
- return output_dict
- class SqueezeBertEncoder(nn.Module):
- def __init__(self, config):
- super().__init__()
- assert config.embedding_size == config.hidden_size, (
- "If you want embedding_size != intermediate hidden_size, "
- "please insert a Conv1d layer to adjust the number of channels "
- "before the first SqueezeBertModule."
- )
- self.layers = nn.ModuleList(SqueezeBertModule(config) for _ in range(config.num_hidden_layers))
- def forward(
- self,
- hidden_states,
- attention_mask=None,
- head_mask=None,
- output_attentions=False,
- output_hidden_states=False,
- return_dict=True,
- ):
- if head_mask is None:
- head_mask_is_all_none = True
- elif head_mask.count(None) == len(head_mask):
- head_mask_is_all_none = True
- else:
- head_mask_is_all_none = False
- assert head_mask_is_all_none is True, "head_mask is not yet supported in the SqueezeBert implementation."
- # [batch_size, sequence_length, hidden_size] --> [batch_size, hidden_size, sequence_length]
- hidden_states = hidden_states.permute(0, 2, 1)
- all_hidden_states = () if output_hidden_states else None
- all_attentions = () if output_attentions else None
- for layer in self.layers:
- if output_hidden_states:
- hidden_states = hidden_states.permute(0, 2, 1)
- all_hidden_states += (hidden_states,)
- hidden_states = hidden_states.permute(0, 2, 1)
- layer_output = layer.forward(hidden_states, attention_mask, output_attentions)
- hidden_states = layer_output["feature_map"]
- if output_attentions:
- all_attentions += (layer_output["attention_score"],)
- # [batch_size, hidden_size, sequence_length] --> [batch_size, sequence_length, hidden_size]
- hidden_states = hidden_states.permute(0, 2, 1)
- if output_hidden_states:
- all_hidden_states += (hidden_states,)
- if not return_dict:
- return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
- return BaseModelOutput(
- last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
- )
- class SqueezeBertPooler(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.activation = nn.Tanh()
- def forward(self, hidden_states):
- # We "pool" the model by simply taking the hidden state corresponding
- # to the first token.
- first_token_tensor = hidden_states[:, 0]
- pooled_output = self.dense(first_token_tensor)
- pooled_output = self.activation(pooled_output)
- return pooled_output
- class SqueezeBertPredictionHeadTransform(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- if isinstance(config.hidden_act, str):
- self.transform_act_fn = ACT2FN[config.hidden_act]
- else:
- self.transform_act_fn = config.hidden_act
- self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- def forward(self, hidden_states):
- hidden_states = self.dense(hidden_states)
- hidden_states = self.transform_act_fn(hidden_states)
- hidden_states = self.LayerNorm(hidden_states)
- return hidden_states
- class SqueezeBertLMPredictionHead(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.transform = SqueezeBertPredictionHeadTransform(config)
- # The output weights are the same as the input embeddings, but there is
- # an output-only bias for each token.
- self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
- self.bias = nn.Parameter(torch.zeros(config.vocab_size))
- # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
- self.decoder.bias = self.bias
- def _tie_weights(self) -> None:
- self.decoder.bias = self.bias
- def forward(self, hidden_states):
- hidden_states = self.transform(hidden_states)
- hidden_states = self.decoder(hidden_states)
- return hidden_states
- class SqueezeBertOnlyMLMHead(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.predictions = SqueezeBertLMPredictionHead(config)
- def forward(self, sequence_output):
- prediction_scores = self.predictions(sequence_output)
- return prediction_scores
- class SqueezeBertPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = SqueezeBertConfig
- base_model_prefix = "transformer"
- def _init_weights(self, module):
- """Initialize the weights"""
- if isinstance(module, (nn.Linear, nn.Conv1d)):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- elif isinstance(module, SqueezeBertLayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- SQUEEZEBERT_START_DOCSTRING = r"""
- The SqueezeBERT model was proposed in [SqueezeBERT: What can computer vision teach NLP about efficient neural
- networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W.
- Keutzer
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
- For best results finetuning SqueezeBERT on text classification tasks, it is recommended to use the
- *squeezebert/squeezebert-mnli-headless* checkpoint as a starting point.
- Parameters:
- config ([`SqueezeBertConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- Hierarchy:
- ```
- Internal class hierarchy:
- SqueezeBertModel
- SqueezeBertEncoder
- SqueezeBertModule
- SqueezeBertSelfAttention
- ConvActivation
- ConvDropoutLayerNorm
- ```
- Data layouts:
- ```
- Input data is in [batch, sequence_length, hidden_size] format.
- Data inside the encoder is in [batch, hidden_size, sequence_length] format. But, if `output_hidden_states == True`, the data from inside the encoder is returned in [batch, sequence_length, hidden_size] format.
- The final output of the encoder is in [batch, sequence_length, hidden_size] format.
- ```
- """
- SQUEEZEBERT_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `({0})`):
- Indices of input sequence tokens in the vocabulary.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
- Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
- 1]`:
- - 0 corresponds to a *sentence A* token,
- - 1 corresponds to a *sentence B* token.
- [What are token type IDs?](../glossary#token-type-ids)
- position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.max_position_embeddings - 1]`.
- [What are position IDs?](../glossary#position-ids)
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
- model's internal embedding lookup matrix.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- @add_start_docstrings(
- "The bare SqueezeBERT Model transformer outputting raw hidden-states without any specific head on top.",
- SQUEEZEBERT_START_DOCSTRING,
- )
- class SqueezeBertModel(SqueezeBertPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.embeddings = SqueezeBertEmbeddings(config)
- self.encoder = SqueezeBertEncoder(config)
- self.pooler = SqueezeBertPooler(config)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.embeddings.word_embeddings
- def set_input_embeddings(self, new_embeddings):
- self.embeddings.word_embeddings = new_embeddings
- def _prune_heads(self, heads_to_prune):
- """
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
- class PreTrainedModel
- """
- for layer, heads in heads_to_prune.items():
- self.encoder.layer[layer].attention.prune_heads(heads)
- @add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=BaseModelOutputWithPooling,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutputWithPooling]:
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
- input_shape = input_ids.size()
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.size()[:-1]
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds")
- device = input_ids.device if input_ids is not None else inputs_embeds.device
- if attention_mask is None:
- attention_mask = torch.ones(input_shape, device=device)
- if token_type_ids is None:
- token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
- extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
- # Prepare head mask if needed
- # 1.0 in head_mask indicate we keep the head
- # attention_probs has shape bsz x n_heads x N x N
- # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
- # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
- head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
- embedding_output = self.embeddings(
- input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
- )
- encoder_outputs = self.encoder(
- hidden_states=embedding_output,
- attention_mask=extended_attention_mask,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = encoder_outputs[0]
- pooled_output = self.pooler(sequence_output)
- if not return_dict:
- return (sequence_output, pooled_output) + encoder_outputs[1:]
- return BaseModelOutputWithPooling(
- last_hidden_state=sequence_output,
- pooler_output=pooled_output,
- hidden_states=encoder_outputs.hidden_states,
- attentions=encoder_outputs.attentions,
- )
- @add_start_docstrings("""SqueezeBERT Model with a `language modeling` head on top.""", SQUEEZEBERT_START_DOCSTRING)
- class SqueezeBertForMaskedLM(SqueezeBertPreTrainedModel):
- _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
- def __init__(self, config):
- super().__init__(config)
- self.transformer = SqueezeBertModel(config)
- self.cls = SqueezeBertOnlyMLMHead(config)
- # Initialize weights and apply final processing
- self.post_init()
- def get_output_embeddings(self):
- return self.cls.predictions.decoder
- def set_output_embeddings(self, new_embeddings):
- self.cls.predictions.decoder = new_embeddings
- self.cls.predictions.bias = new_embeddings.bias
- @add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=MaskedLMOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, MaskedLMOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
- config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
- loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.transformer(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- prediction_scores = self.cls(sequence_output)
- masked_lm_loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss() # -100 index = padding token
- masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
- if not return_dict:
- output = (prediction_scores,) + outputs[2:]
- return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
- return MaskedLMOutput(
- loss=masked_lm_loss,
- logits=prediction_scores,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- SqueezeBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the
- pooled output) e.g. for GLUE tasks.
- """,
- SQUEEZEBERT_START_DOCSTRING,
- )
- class SqueezeBertForSequenceClassification(SqueezeBertPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.config = config
- self.transformer = SqueezeBertModel(config)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=SequenceClassifierOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, SequenceClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.transformer(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- pooled_output = outputs[1]
- pooled_output = self.dropout(pooled_output)
- logits = self.classifier(pooled_output)
- loss = None
- if labels is not None:
- if self.config.problem_type is None:
- if self.num_labels == 1:
- self.config.problem_type = "regression"
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
- self.config.problem_type = "single_label_classification"
- else:
- self.config.problem_type = "multi_label_classification"
- if self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.num_labels == 1:
- loss = loss_fct(logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(logits, labels)
- if not return_dict:
- output = (logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return SequenceClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- SqueezeBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and
- a softmax) e.g. for RocStories/SWAG tasks.
- """,
- SQUEEZEBERT_START_DOCSTRING,
- )
- class SqueezeBertForMultipleChoice(SqueezeBertPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.transformer = SqueezeBertModel(config)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.classifier = nn.Linear(config.hidden_size, 1)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(
- SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
- )
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=MultipleChoiceModelOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, MultipleChoiceModelOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
- num_choices-1]` where *num_choices* is the size of the second dimension of the input tensors. (see
- *input_ids* above)
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
- input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
- attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
- token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
- position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
- inputs_embeds = (
- inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
- if inputs_embeds is not None
- else None
- )
- outputs = self.transformer(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- pooled_output = outputs[1]
- pooled_output = self.dropout(pooled_output)
- logits = self.classifier(pooled_output)
- reshaped_logits = logits.view(-1, num_choices)
- loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(reshaped_logits, labels)
- if not return_dict:
- output = (reshaped_logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return MultipleChoiceModelOutput(
- loss=loss,
- logits=reshaped_logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- SqueezeBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
- for Named-Entity-Recognition (NER) tasks.
- """,
- SQUEEZEBERT_START_DOCSTRING,
- )
- class SqueezeBertForTokenClassification(SqueezeBertPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.transformer = SqueezeBertModel(config)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=TokenClassifierOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, TokenClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.transformer(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- sequence_output = self.dropout(sequence_output)
- logits = self.classifier(sequence_output)
- loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- if not return_dict:
- output = (logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return TokenClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- SqueezeBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
- linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
- """,
- SQUEEZEBERT_START_DOCSTRING,
- )
- class SqueezeBertForQuestionAnswering(SqueezeBertPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.transformer = SqueezeBertModel(config)
- self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=QuestionAnsweringModelOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- start_positions: Optional[torch.Tensor] = None,
- end_positions: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, QuestionAnsweringModelOutput]:
- r"""
- start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the start of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
- are not taken into account for computing the loss.
- end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the end of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
- are not taken into account for computing the loss.
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.transformer(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- logits = self.qa_outputs(sequence_output)
- start_logits, end_logits = logits.split(1, dim=-1)
- start_logits = start_logits.squeeze(-1).contiguous()
- end_logits = end_logits.squeeze(-1).contiguous()
- total_loss = None
- if start_positions is not None and end_positions is not None:
- # If we are on multi-GPU, split add a dimension
- if len(start_positions.size()) > 1:
- start_positions = start_positions.squeeze(-1)
- if len(end_positions.size()) > 1:
- end_positions = end_positions.squeeze(-1)
- # sometimes the start/end positions are outside our model inputs, we ignore these terms
- ignored_index = start_logits.size(1)
- start_positions = start_positions.clamp(0, ignored_index)
- end_positions = end_positions.clamp(0, ignored_index)
- loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
- start_loss = loss_fct(start_logits, start_positions)
- end_loss = loss_fct(end_logits, end_positions)
- total_loss = (start_loss + end_loss) / 2
- if not return_dict:
- output = (start_logits, end_logits) + outputs[2:]
- return ((total_loss,) + output) if total_loss is not None else output
- return QuestionAnsweringModelOutput(
- loss=total_loss,
- start_logits=start_logits,
- end_logits=end_logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
|