| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687 |
- # Copyright 2024 The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import List
- from ...configuration_utils import PretrainedConfig
- from ...utils import logging
- logger = logging.get_logger(__name__)
- class SuperPointConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`SuperPointForKeypointDetection`]. It is used to instantiate a
- SuperPoint model according to the specified arguments, defining the model architecture. Instantiating a
- configuration with the defaults will yield a similar configuration to that of the SuperPoint
- [magic-leap-community/superpoint](https://huggingface.co/magic-leap-community/superpoint) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- encoder_hidden_sizes (`List`, *optional*, defaults to `[64, 64, 128, 128]`):
- The number of channels in each convolutional layer in the encoder.
- decoder_hidden_size (`int`, *optional*, defaults to 256): The hidden size of the decoder.
- keypoint_decoder_dim (`int`, *optional*, defaults to 65): The output dimension of the keypoint decoder.
- descriptor_decoder_dim (`int`, *optional*, defaults to 256): The output dimension of the descriptor decoder.
- keypoint_threshold (`float`, *optional*, defaults to 0.005):
- The threshold to use for extracting keypoints.
- max_keypoints (`int`, *optional*, defaults to -1):
- The maximum number of keypoints to extract. If `-1`, will extract all keypoints.
- nms_radius (`int`, *optional*, defaults to 4):
- The radius for non-maximum suppression.
- border_removal_distance (`int`, *optional*, defaults to 4):
- The distance from the border to remove keypoints.
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- Example:
- ```python
- >>> from transformers import SuperPointConfig, SuperPointForKeypointDetection
- >>> # Initializing a SuperPoint superpoint style configuration
- >>> configuration = SuperPointConfig()
- >>> # Initializing a model from the superpoint style configuration
- >>> model = SuperPointForKeypointDetection(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "superpoint"
- def __init__(
- self,
- encoder_hidden_sizes: List[int] = [64, 64, 128, 128],
- decoder_hidden_size: int = 256,
- keypoint_decoder_dim: int = 65,
- descriptor_decoder_dim: int = 256,
- keypoint_threshold: float = 0.005,
- max_keypoints: int = -1,
- nms_radius: int = 4,
- border_removal_distance: int = 4,
- initializer_range=0.02,
- **kwargs,
- ):
- self.encoder_hidden_sizes = encoder_hidden_sizes
- self.decoder_hidden_size = decoder_hidden_size
- self.keypoint_decoder_dim = keypoint_decoder_dim
- self.descriptor_decoder_dim = descriptor_decoder_dim
- self.keypoint_threshold = keypoint_threshold
- self.max_keypoints = max_keypoints
- self.nms_radius = nms_radius
- self.border_removal_distance = border_removal_distance
- self.initializer_range = initializer_range
- super().__init__(**kwargs)
|