| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272 |
- # Copyright 2024 The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Image processor class for SuperPoint."""
- from typing import Dict, Optional, Union
- import numpy as np
- from ... import is_vision_available
- from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
- from ...image_transforms import resize, to_channel_dimension_format
- from ...image_utils import (
- ChannelDimension,
- ImageInput,
- infer_channel_dimension_format,
- is_scaled_image,
- make_list_of_images,
- to_numpy_array,
- valid_images,
- )
- from ...utils import TensorType, logging, requires_backends
- if is_vision_available():
- import PIL
- logger = logging.get_logger(__name__)
- def is_grayscale(
- image: ImageInput,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ):
- if input_data_format == ChannelDimension.FIRST:
- return np.all(image[0, ...] == image[1, ...]) and np.all(image[1, ...] == image[2, ...])
- elif input_data_format == ChannelDimension.LAST:
- return np.all(image[..., 0] == image[..., 1]) and np.all(image[..., 1] == image[..., 2])
- def convert_to_grayscale(
- image: ImageInput,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- ) -> ImageInput:
- """
- Converts an image to grayscale format using the NTSC formula. Only support numpy and PIL Image. TODO support torch
- and tensorflow grayscale conversion
- This function is supposed to return a 1-channel image, but it returns a 3-channel image with the same value in each
- channel, because of an issue that is discussed in :
- https://github.com/huggingface/transformers/pull/25786#issuecomment-1730176446
- Args:
- image (Image):
- The image to convert.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the input image.
- """
- requires_backends(convert_to_grayscale, ["vision"])
- if isinstance(image, np.ndarray):
- if input_data_format == ChannelDimension.FIRST:
- gray_image = image[0, ...] * 0.2989 + image[1, ...] * 0.5870 + image[2, ...] * 0.1140
- gray_image = np.stack([gray_image] * 3, axis=0)
- elif input_data_format == ChannelDimension.LAST:
- gray_image = image[..., 0] * 0.2989 + image[..., 1] * 0.5870 + image[..., 2] * 0.1140
- gray_image = np.stack([gray_image] * 3, axis=-1)
- return gray_image
- if not isinstance(image, PIL.Image.Image):
- return image
- image = image.convert("L")
- return image
- class SuperPointImageProcessor(BaseImageProcessor):
- r"""
- Constructs a SuperPoint image processor.
- Args:
- do_resize (`bool`, *optional*, defaults to `True`):
- Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overriden
- by `do_resize` in the `preprocess` method.
- size (`Dict[str, int]` *optional*, defaults to `{"height": 480, "width": 640}`):
- Resolution of the output image after `resize` is applied. Only has an effect if `do_resize` is set to
- `True`. Can be overriden by `size` in the `preprocess` method.
- do_rescale (`bool`, *optional*, defaults to `True`):
- Whether to rescale the image by the specified scale `rescale_factor`. Can be overriden by `do_rescale` in
- the `preprocess` method.
- rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
- Scale factor to use if rescaling the image. Can be overriden by `rescale_factor` in the `preprocess`
- method.
- """
- model_input_names = ["pixel_values"]
- def __init__(
- self,
- do_resize: bool = True,
- size: Dict[str, int] = None,
- do_rescale: bool = True,
- rescale_factor: float = 1 / 255,
- **kwargs,
- ) -> None:
- super().__init__(**kwargs)
- size = size if size is not None else {"height": 480, "width": 640}
- size = get_size_dict(size, default_to_square=False)
- self.do_resize = do_resize
- self.size = size
- self.do_rescale = do_rescale
- self.rescale_factor = rescale_factor
- def resize(
- self,
- image: np.ndarray,
- size: Dict[str, int],
- data_format: Optional[Union[str, ChannelDimension]] = None,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- **kwargs,
- ):
- """
- Resize an image.
- Args:
- image (`np.ndarray`):
- Image to resize.
- size (`Dict[str, int]`):
- Dictionary of the form `{"height": int, "width": int}`, specifying the size of the output image.
- data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format of the output image. If not provided, it will be inferred from the input
- image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the input image. If unset, the channel dimension format is inferred
- from the input image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- """
- size = get_size_dict(size, default_to_square=False)
- return resize(
- image,
- size=(size["height"], size["width"]),
- data_format=data_format,
- input_data_format=input_data_format,
- **kwargs,
- )
- def preprocess(
- self,
- images,
- do_resize: bool = None,
- size: Dict[str, int] = None,
- do_rescale: bool = None,
- rescale_factor: float = None,
- return_tensors: Optional[Union[str, TensorType]] = None,
- data_format: ChannelDimension = ChannelDimension.FIRST,
- input_data_format: Optional[Union[str, ChannelDimension]] = None,
- **kwargs,
- ) -> BatchFeature:
- """
- Preprocess an image or batch of images.
- Args:
- images (`ImageInput`):
- Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
- passing in images with pixel values between 0 and 1, set `do_rescale=False`.
- do_resize (`bool`, *optional*, defaults to `self.do_resize`):
- Whether to resize the image.
- size (`Dict[str, int]`, *optional*, defaults to `self.size`):
- Size of the output image after `resize` has been applied. If `size["shortest_edge"]` >= 384, the image
- is resized to `(size["shortest_edge"], size["shortest_edge"])`. Otherwise, the smaller edge of the
- image will be matched to `int(size["shortest_edge"]/ crop_pct)`, after which the image is cropped to
- `(size["shortest_edge"], size["shortest_edge"])`. Only has an effect if `do_resize` is set to `True`.
- do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
- Whether to rescale the image values between [0 - 1].
- rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
- Rescale factor to rescale the image by if `do_rescale` is set to `True`.
- return_tensors (`str` or `TensorType`, *optional*):
- The type of tensors to return. Can be one of:
- - Unset: Return a list of `np.ndarray`.
- - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
- data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
- The channel dimension format for the output image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - Unset: Use the channel dimension format of the input image.
- input_data_format (`ChannelDimension` or `str`, *optional*):
- The channel dimension format for the input image. If unset, the channel dimension format is inferred
- from the input image. Can be one of:
- - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
- """
- do_resize = do_resize if do_resize is not None else self.do_resize
- do_rescale = do_rescale if do_rescale is not None else self.do_rescale
- rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
- size = size if size is not None else self.size
- size = get_size_dict(size, default_to_square=False)
- images = make_list_of_images(images)
- if not valid_images(images):
- raise ValueError(
- "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
- "torch.Tensor, tf.Tensor or jax.ndarray."
- )
- if do_resize and size is None:
- raise ValueError("Size must be specified if do_resize is True.")
- if do_rescale and rescale_factor is None:
- raise ValueError("Rescale factor must be specified if do_rescale is True.")
- # All transformations expect numpy arrays.
- images = [to_numpy_array(image) for image in images]
- if is_scaled_image(images[0]) and do_rescale:
- logger.warning_once(
- "It looks like you are trying to rescale already rescaled images. If the input"
- " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
- )
- if input_data_format is None:
- # We assume that all images have the same channel dimension format.
- input_data_format = infer_channel_dimension_format(images[0])
- if do_resize:
- images = [self.resize(image=image, size=size, input_data_format=input_data_format) for image in images]
- if do_rescale:
- images = [
- self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
- for image in images
- ]
- if input_data_format is None:
- # We assume that all images have the same channel dimension format.
- input_data_format = infer_channel_dimension_format(images[0])
- # Checking if image is RGB or grayscale
- for i in range(len(images)):
- if not is_grayscale(images[i], input_data_format):
- images[i] = convert_to_grayscale(images[i], input_data_format=input_data_format)
- images = [
- to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
- ]
- data = {"pixel_values": images}
- return BatchFeature(data=data, tensor_type=return_tensors)
|