| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- # Copyright 2020 The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import TYPE_CHECKING
- from ...utils import (
- OptionalDependencyNotAvailable,
- _LazyModule,
- is_flax_available,
- is_sentencepiece_available,
- is_tf_available,
- is_tokenizers_available,
- is_torch_available,
- )
- _import_structure = {"configuration_t5": ["T5Config", "T5OnnxConfig"]}
- try:
- if not is_sentencepiece_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- _import_structure["tokenization_t5"] = ["T5Tokenizer"]
- try:
- if not is_tokenizers_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- _import_structure["tokenization_t5_fast"] = ["T5TokenizerFast"]
- try:
- if not is_torch_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- _import_structure["modeling_t5"] = [
- "T5EncoderModel",
- "T5ForConditionalGeneration",
- "T5Model",
- "T5PreTrainedModel",
- "load_tf_weights_in_t5",
- "T5ForQuestionAnswering",
- "T5ForSequenceClassification",
- "T5ForTokenClassification",
- ]
- try:
- if not is_tf_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- _import_structure["modeling_tf_t5"] = [
- "TFT5EncoderModel",
- "TFT5ForConditionalGeneration",
- "TFT5Model",
- "TFT5PreTrainedModel",
- ]
- try:
- if not is_flax_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- _import_structure["modeling_flax_t5"] = [
- "FlaxT5EncoderModel",
- "FlaxT5ForConditionalGeneration",
- "FlaxT5Model",
- "FlaxT5PreTrainedModel",
- ]
- if TYPE_CHECKING:
- from .configuration_t5 import T5Config, T5OnnxConfig
- try:
- if not is_sentencepiece_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- from .tokenization_t5 import T5Tokenizer
- try:
- if not is_tokenizers_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- from .tokenization_t5_fast import T5TokenizerFast
- try:
- if not is_torch_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- from .modeling_t5 import (
- T5EncoderModel,
- T5ForConditionalGeneration,
- T5ForQuestionAnswering,
- T5ForSequenceClassification,
- T5ForTokenClassification,
- T5Model,
- T5PreTrainedModel,
- load_tf_weights_in_t5,
- )
- try:
- if not is_tf_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- from .modeling_tf_t5 import (
- TFT5EncoderModel,
- TFT5ForConditionalGeneration,
- TFT5Model,
- TFT5PreTrainedModel,
- )
- try:
- if not is_flax_available():
- raise OptionalDependencyNotAvailable()
- except OptionalDependencyNotAvailable:
- pass
- else:
- from .modeling_flax_t5 import (
- FlaxT5EncoderModel,
- FlaxT5ForConditionalGeneration,
- FlaxT5Model,
- FlaxT5PreTrainedModel,
- )
- else:
- import sys
- sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|