| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493 |
- # coding=utf-8
- # Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch T5 model."""
- import copy
- import math
- import os
- import warnings
- from typing import List, Optional, Tuple, Union
- import torch
- from torch import nn
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
- from ...activations import ACT2FN
- from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache, StaticCache
- from ...generation import GenerationMixin
- from ...modeling_attn_mask_utils import AttentionMaskConverter
- from ...modeling_outputs import (
- BaseModelOutput,
- BaseModelOutputWithPastAndCrossAttentions,
- Seq2SeqLMOutput,
- Seq2SeqModelOutput,
- Seq2SeqQuestionAnsweringModelOutput,
- Seq2SeqSequenceClassifierOutput,
- TokenClassifierOutput,
- )
- from ...modeling_utils import PreTrainedModel
- from ...pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer
- from ...utils import (
- DUMMY_INPUTS,
- DUMMY_MASK,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- is_torch_fx_proxy,
- is_torchdynamo_compiling,
- logging,
- replace_return_docstrings,
- )
- from ...utils.model_parallel_utils import assert_device_map, get_device_map
- from .configuration_t5 import T5Config
- logger = logging.get_logger(__name__)
- _CONFIG_FOR_DOC = "T5Config"
- _CHECKPOINT_FOR_DOC = "google-t5/t5-small"
- ####################################################
- # This dict contains ids and associated url
- # for the pretrained weights provided with the models
- ####################################################
- ####################################################
- # This is a conversion method from TF 1.0 to PyTorch
- # More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28
- ####################################################
- def load_tf_weights_in_t5(model, config, tf_checkpoint_path):
- """Load tf checkpoints in a pytorch model."""
- try:
- import re
- import numpy as np
- import tensorflow as tf
- except ImportError:
- logger.error(
- "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
- "https://www.tensorflow.org/install/ for installation instructions."
- )
- raise
- tf_path = os.path.abspath(tf_checkpoint_path)
- logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
- # Load weights from TF model
- init_vars = tf.train.list_variables(tf_path)
- names = []
- tf_weights = {}
- for name, shape in init_vars:
- logger.info(f"Loading TF weight {name} with shape {shape}")
- array = tf.train.load_variable(tf_path, name)
- names.append(name)
- tf_weights[name] = array
- for txt_name in names:
- name = txt_name.split("/")
- # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
- # which are not required for using pretrained model
- if any(
- n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
- for n in name
- ):
- logger.info(f"Skipping {'/'.join(name)}")
- tf_weights.pop(txt_name, None)
- continue
- if "_slot_" in name[-1]:
- logger.info(f"Skipping {'/'.join(name)}")
- tf_weights.pop(txt_name, None)
- continue
- pointer = model
- array = tf_weights[txt_name]
- for m_name in name:
- if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
- scope_names = re.split(r"_(\d+)", m_name)
- else:
- scope_names = [m_name]
- if scope_names[0] in ["kernel", "scale", "embedding"]:
- pointer = getattr(pointer, "weight")
- elif scope_names[0] == "self_attention":
- pointer = getattr(pointer, "layer")
- pointer = pointer[0]
- elif scope_names[0] == "enc_dec_attention":
- pointer = getattr(pointer, "layer")
- pointer = pointer[1]
- elif scope_names[0] == "dense_relu_dense":
- pointer = getattr(pointer, "layer")
- pointer = pointer[2]
- elif scope_names[0] == "rms_norm":
- if hasattr(pointer, "layer_norm"):
- pointer = getattr(pointer, "layer_norm")
- elif hasattr(pointer, "final_layer_norm"):
- pointer = getattr(pointer, "final_layer_norm")
- elif scope_names[0] == "scale":
- pointer = getattr(pointer, "weight")
- elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
- pointer = getattr(pointer, "bias")
- elif scope_names[0] == "squad":
- pointer = getattr(pointer, "classifier")
- elif scope_names[0] == "decoder" and name[1] == "logits":
- continue
- elif scope_names[0] == "logits":
- pointer = getattr(pointer, "lm_head")
- elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit():
- pointer = getattr(pointer, f"wi_{scope_names[1]}")
- continue
- else:
- try:
- pointer = getattr(pointer, scope_names[0])
- except AttributeError:
- logger.info(f"Skipping {'/'.join(name)}")
- continue
- if len(scope_names) >= 2:
- num = int(scope_names[1])
- pointer = pointer[num]
- if scope_names[0] not in ["kernel", "scale", "embedding"]:
- pointer = getattr(pointer, "weight")
- if scope_names[0] != "embedding":
- logger.info(f"Transposing numpy weight of shape {array.shape} for {name}")
- array = np.transpose(array)
- try:
- if pointer.shape != array.shape:
- raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
- except AssertionError as e:
- e.args += (pointer.shape, array.shape)
- raise
- logger.info(f"Initialize PyTorch weight {name}")
- pointer.data = torch.from_numpy(array.astype(np.float32))
- tf_weights.pop(txt_name, None)
- logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.")
- return model
- ####################################################
- # PyTorch Models are constructed by sub-classing
- # - torch.nn.Module for the layers and
- # - PreTrainedModel for the models (it-self a sub-class of nn.Module)
- ####################################################
- PARALLELIZE_DOCSTRING = r"""
- This is an experimental feature and is a subject to change at a moment's notice.
- Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
- it will evenly distribute blocks across all devices.
- Args:
- device_map (`Dict[int, list]`, *optional*):
- A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
- automatically mapped to the first device (for esoteric reasons). That means that the first device should
- have fewer attention modules mapped to it than other devices. For reference, the t5 models have the
- following number of attention modules:
- - google-t5/t5-small: 6
- - google-t5/t5-base: 12
- - google-t5/t5-large: 24
- - google-t5/t5-3b: 24
- - google-t5/t5-11b: 24
- Example:
- ```python
- # Here is an example of a device map on a machine with 4 GPUs using google-t5/t5-3b, which has a total of 24 attention modules:
- model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-3b")
- device_map = {
- 0: [0, 1, 2],
- 1: [3, 4, 5, 6, 7, 8, 9],
- 2: [10, 11, 12, 13, 14, 15, 16],
- 3: [17, 18, 19, 20, 21, 22, 23],
- }
- model.parallelize(device_map)
- ```
- """
- DEPARALLELIZE_DOCSTRING = r"""
- Moves the model to cpu from a model parallel state.
- Example:
- ```python
- # On a 4 GPU machine with google-t5/t5-3b:
- model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-3b")
- device_map = {
- 0: [0, 1, 2],
- 1: [3, 4, 5, 6, 7, 8, 9],
- 2: [10, 11, 12, 13, 14, 15, 16],
- 3: [17, 18, 19, 20, 21, 22, 23],
- }
- model.parallelize(device_map) # Splits the model across several devices
- model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
- ```
- """
- class T5LayerNorm(nn.Module):
- def __init__(self, hidden_size, eps=1e-6):
- """
- Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
- """
- super().__init__()
- self.weight = nn.Parameter(torch.ones(hidden_size))
- self.variance_epsilon = eps
- def forward(self, hidden_states):
- # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
- # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
- # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
- # half-precision inputs is done in fp32
- variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
- # convert into half-precision if necessary
- if self.weight.dtype in [torch.float16, torch.bfloat16]:
- hidden_states = hidden_states.to(self.weight.dtype)
- return self.weight * hidden_states
- try:
- from apex.normalization import FusedRMSNorm
- T5LayerNorm = FusedRMSNorm # noqa
- logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of T5LayerNorm")
- except ImportError:
- # using the normal T5LayerNorm
- pass
- except Exception:
- logger.warning("discovered apex but it failed to load, falling back to T5LayerNorm")
- pass
- ALL_LAYERNORM_LAYERS.append(T5LayerNorm)
- class T5DenseActDense(nn.Module):
- def __init__(self, config: T5Config):
- super().__init__()
- self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
- self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
- self.dropout = nn.Dropout(config.dropout_rate)
- self.act = ACT2FN[config.dense_act_fn]
- def forward(self, hidden_states):
- hidden_states = self.wi(hidden_states)
- hidden_states = self.act(hidden_states)
- hidden_states = self.dropout(hidden_states)
- if (
- isinstance(self.wo.weight, torch.Tensor)
- and hidden_states.dtype != self.wo.weight.dtype
- and self.wo.weight.dtype != torch.int8
- ):
- hidden_states = hidden_states.to(self.wo.weight.dtype)
- hidden_states = self.wo(hidden_states)
- return hidden_states
- class T5DenseGatedActDense(nn.Module):
- def __init__(self, config: T5Config):
- super().__init__()
- self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
- self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
- self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
- self.dropout = nn.Dropout(config.dropout_rate)
- self.act = ACT2FN[config.dense_act_fn]
- def forward(self, hidden_states):
- hidden_gelu = self.act(self.wi_0(hidden_states))
- hidden_linear = self.wi_1(hidden_states)
- hidden_states = hidden_gelu * hidden_linear
- hidden_states = self.dropout(hidden_states)
- # To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
- # See https://github.com/huggingface/transformers/issues/20287
- # we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
- if (
- isinstance(self.wo.weight, torch.Tensor)
- and hidden_states.dtype != self.wo.weight.dtype
- and self.wo.weight.dtype != torch.int8
- ):
- hidden_states = hidden_states.to(self.wo.weight.dtype)
- hidden_states = self.wo(hidden_states)
- return hidden_states
- class T5LayerFF(nn.Module):
- def __init__(self, config: T5Config):
- super().__init__()
- if config.is_gated_act:
- self.DenseReluDense = T5DenseGatedActDense(config)
- else:
- self.DenseReluDense = T5DenseActDense(config)
- self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
- self.dropout = nn.Dropout(config.dropout_rate)
- def forward(self, hidden_states):
- forwarded_states = self.layer_norm(hidden_states)
- forwarded_states = self.DenseReluDense(forwarded_states)
- hidden_states = hidden_states + self.dropout(forwarded_states)
- return hidden_states
- class T5Attention(nn.Module):
- def __init__(
- self,
- config: T5Config,
- has_relative_attention_bias=False,
- layer_idx: Optional[int] = None,
- ):
- super().__init__()
- self.is_decoder = config.is_decoder
- self.has_relative_attention_bias = has_relative_attention_bias
- self.relative_attention_num_buckets = config.relative_attention_num_buckets
- self.relative_attention_max_distance = config.relative_attention_max_distance
- self.d_model = config.d_model
- self.key_value_proj_dim = config.d_kv
- self.n_heads = config.num_heads
- self.dropout = config.dropout_rate
- self.inner_dim = self.n_heads * self.key_value_proj_dim
- self.layer_idx = layer_idx
- if layer_idx is None and self.is_decoder:
- logger.warning_once(
- f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and "
- "will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
- "when creating this class."
- )
- # Mesh TensorFlow initialization to avoid scaling before softmax
- self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
- self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
- self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
- self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
- if self.has_relative_attention_bias:
- self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
- self.pruned_heads = set()
- self.gradient_checkpointing = False
- def prune_heads(self, heads):
- if len(heads) == 0:
- return
- heads, index = find_pruneable_heads_and_indices(
- heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
- )
- # Prune linear layers
- self.q = prune_linear_layer(self.q, index)
- self.k = prune_linear_layer(self.k, index)
- self.v = prune_linear_layer(self.v, index)
- self.o = prune_linear_layer(self.o, index, dim=1)
- # Update hyper params
- self.n_heads = self.n_heads - len(heads)
- self.inner_dim = self.key_value_proj_dim * self.n_heads
- self.pruned_heads = self.pruned_heads.union(heads)
- @staticmethod
- def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
- """
- Adapted from Mesh Tensorflow:
- https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
- Translate relative position to a bucket number for relative attention. The relative position is defined as
- memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
- position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
- small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
- positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
- This should allow for more graceful generalization to longer sequences than the model has been trained on
- Args:
- relative_position: an int32 Tensor
- bidirectional: a boolean - whether the attention is bidirectional
- num_buckets: an integer
- max_distance: an integer
- Returns:
- a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
- """
- relative_buckets = 0
- if bidirectional:
- num_buckets //= 2
- relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
- relative_position = torch.abs(relative_position)
- else:
- relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
- # now relative_position is in the range [0, inf)
- # half of the buckets are for exact increments in positions
- max_exact = num_buckets // 2
- is_small = relative_position < max_exact
- # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
- relative_position_if_large = max_exact + (
- torch.log(relative_position.float() / max_exact)
- / math.log(max_distance / max_exact)
- * (num_buckets - max_exact)
- ).to(torch.long)
- relative_position_if_large = torch.min(
- relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
- )
- relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
- return relative_buckets
- def compute_bias(self, query_length, key_length, device=None, cache_position=None):
- """Compute binned relative position bias"""
- if device is None:
- device = self.relative_attention_bias.weight.device
- if cache_position is None:
- context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
- else:
- context_position = cache_position[:, None].to(device)
- memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
- relative_position = memory_position - context_position # shape (query_length, key_length)
- relative_position_bucket = self._relative_position_bucket(
- relative_position, # shape (query_length, key_length)
- bidirectional=(not self.is_decoder),
- num_buckets=self.relative_attention_num_buckets,
- max_distance=self.relative_attention_max_distance,
- )
- values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
- values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
- return values
- def forward(
- self,
- hidden_states,
- mask=None,
- key_value_states=None,
- position_bias=None,
- past_key_value=None,
- layer_head_mask=None,
- query_length=None,
- use_cache=False,
- output_attentions=False,
- cache_position=None,
- ):
- """
- Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
- """
- # Input is (batch_size, seq_length, dim)
- # Mask is (batch_size, 1, 1, key_length) (non-causal encoder) or (batch_size, 1, seq_length, key_length) (causal decoder)
- batch_size, seq_length = hidden_states.shape[:2]
- # if key_value_states are provided this layer is used as a cross-attention layer for the decoder
- is_cross_attention = key_value_states is not None
- query_states = self.q(hidden_states)
- query_states = query_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
- if past_key_value is not None:
- is_updated = past_key_value.is_updated.get(self.layer_idx)
- if is_cross_attention:
- # after the first generated id, we can subsequently re-use all key/value_states from cache
- curr_past_key_value = past_key_value.cross_attention_cache
- else:
- curr_past_key_value = past_key_value.self_attention_cache
- current_states = key_value_states if is_cross_attention else hidden_states
- if is_cross_attention and past_key_value is not None and is_updated:
- # reuse k,v, cross_attentions
- key_states = curr_past_key_value.key_cache[self.layer_idx]
- value_states = curr_past_key_value.value_cache[self.layer_idx]
- else:
- key_states = self.k(current_states)
- value_states = self.v(current_states)
- key_states = key_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
- value_states = value_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
- if past_key_value is not None:
- # save all key/value_states to cache to be re-used for fast auto-regressive generation
- cache_position = cache_position if not is_cross_attention else None
- key_states, value_states = curr_past_key_value.update(
- key_states, value_states, self.layer_idx, {"cache_position": cache_position}
- )
- # set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls
- if is_cross_attention:
- past_key_value.is_updated[self.layer_idx] = True
- # compute scores, equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
- scores = torch.matmul(query_states, key_states.transpose(3, 2))
- if position_bias is None:
- key_length = key_states.shape[-2]
- # cache position is 0-indexed so we add 1 to get the real length of queries (aka with past)
- real_seq_length = query_length if query_length is not None else cache_position[-1] + 1
- if not self.has_relative_attention_bias:
- position_bias = torch.zeros(
- (1, self.n_heads, seq_length, key_length), device=scores.device, dtype=scores.dtype
- )
- if self.gradient_checkpointing and self.training:
- position_bias.requires_grad = True
- else:
- position_bias = self.compute_bias(
- real_seq_length, key_length, device=scores.device, cache_position=cache_position
- )
- position_bias = position_bias[:, :, -seq_length:, :]
- if mask is not None:
- causal_mask = mask[:, :, :, : key_states.shape[-2]]
- position_bias = position_bias + causal_mask
- if self.pruned_heads:
- mask = torch.ones(position_bias.shape[1])
- mask[list(self.pruned_heads)] = 0
- position_bias_masked = position_bias[:, mask.bool()]
- else:
- position_bias_masked = position_bias
- scores += position_bias_masked
- # (batch_size, n_heads, seq_length, key_length)
- attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
- attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
- # Mask heads if we want to
- if layer_head_mask is not None:
- attn_weights = attn_weights * layer_head_mask
- attn_output = torch.matmul(attn_weights, value_states)
- attn_output = attn_output.transpose(1, 2).contiguous()
- attn_output = attn_output.view(batch_size, -1, self.inner_dim)
- attn_output = self.o(attn_output)
- outputs = (attn_output, past_key_value, position_bias)
- if output_attentions:
- outputs = outputs + (attn_weights,)
- return outputs
- class T5LayerSelfAttention(nn.Module):
- def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
- super().__init__()
- self.SelfAttention = T5Attention(
- config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx
- )
- self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
- self.dropout = nn.Dropout(config.dropout_rate)
- def forward(
- self,
- hidden_states,
- attention_mask=None,
- position_bias=None,
- layer_head_mask=None,
- past_key_value=None,
- use_cache=False,
- output_attentions=False,
- cache_position=None,
- ):
- normed_hidden_states = self.layer_norm(hidden_states)
- attention_output = self.SelfAttention(
- normed_hidden_states,
- mask=attention_mask,
- position_bias=position_bias,
- layer_head_mask=layer_head_mask,
- past_key_value=past_key_value,
- use_cache=use_cache,
- output_attentions=output_attentions,
- cache_position=cache_position,
- )
- hidden_states = hidden_states + self.dropout(attention_output[0])
- outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
- return outputs
- class T5LayerCrossAttention(nn.Module):
- def __init__(self, config, layer_idx: Optional[int] = None):
- super().__init__()
- self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False, layer_idx=layer_idx)
- self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
- self.dropout = nn.Dropout(config.dropout_rate)
- def forward(
- self,
- hidden_states,
- key_value_states,
- attention_mask=None,
- position_bias=None,
- layer_head_mask=None,
- past_key_value=None,
- use_cache=False,
- query_length=None,
- output_attentions=False,
- cache_position=None,
- ):
- normed_hidden_states = self.layer_norm(hidden_states)
- attention_output = self.EncDecAttention(
- normed_hidden_states,
- mask=attention_mask,
- key_value_states=key_value_states,
- position_bias=position_bias,
- layer_head_mask=layer_head_mask,
- past_key_value=past_key_value,
- use_cache=use_cache,
- query_length=query_length,
- output_attentions=output_attentions,
- cache_position=cache_position,
- )
- layer_output = hidden_states + self.dropout(attention_output[0])
- outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
- return outputs
- class T5Block(nn.Module):
- def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
- super().__init__()
- self.is_decoder = config.is_decoder
- self.layer = nn.ModuleList()
- self.layer.append(
- T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx)
- )
- if self.is_decoder:
- self.layer.append(T5LayerCrossAttention(config, layer_idx=layer_idx))
- self.layer.append(T5LayerFF(config))
- def forward(
- self,
- hidden_states,
- attention_mask=None,
- position_bias=None,
- encoder_hidden_states=None,
- encoder_attention_mask=None,
- encoder_decoder_position_bias=None,
- layer_head_mask=None,
- cross_attn_layer_head_mask=None,
- past_key_value=None,
- use_cache=False,
- output_attentions=False,
- return_dict=True,
- cache_position=None,
- ):
- self_attention_outputs = self.layer[0](
- hidden_states,
- attention_mask=attention_mask,
- position_bias=position_bias,
- layer_head_mask=layer_head_mask,
- past_key_value=past_key_value,
- use_cache=use_cache,
- output_attentions=output_attentions,
- cache_position=cache_position,
- )
- hidden_states, past_key_value = self_attention_outputs[:2]
- attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
- # clamp inf values to enable fp16 training
- if hidden_states.dtype == torch.float16:
- clamp_value = torch.where(
- torch.isinf(hidden_states).any(),
- torch.finfo(hidden_states.dtype).max - 1000,
- torch.finfo(hidden_states.dtype).max,
- )
- hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
- do_cross_attention = self.is_decoder and encoder_hidden_states is not None
- if do_cross_attention:
- cross_attention_outputs = self.layer[1](
- hidden_states,
- key_value_states=encoder_hidden_states,
- attention_mask=encoder_attention_mask,
- position_bias=encoder_decoder_position_bias,
- layer_head_mask=cross_attn_layer_head_mask,
- past_key_value=past_key_value,
- query_length=cache_position[-1] + 1,
- use_cache=use_cache,
- output_attentions=output_attentions,
- )
- hidden_states, past_key_value = cross_attention_outputs[:2]
- # clamp inf values to enable fp16 training
- if hidden_states.dtype == torch.float16:
- clamp_value = torch.where(
- torch.isinf(hidden_states).any(),
- torch.finfo(hidden_states.dtype).max - 1000,
- torch.finfo(hidden_states.dtype).max,
- )
- hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
- # Keep cross-attention outputs and relative position weights
- attention_outputs = attention_outputs + cross_attention_outputs[2:]
- # Apply Feed Forward layer
- hidden_states = self.layer[-1](hidden_states)
- # clamp inf values to enable fp16 training
- if hidden_states.dtype == torch.float16:
- clamp_value = torch.where(
- torch.isinf(hidden_states).any(),
- torch.finfo(hidden_states.dtype).max - 1000,
- torch.finfo(hidden_states.dtype).max,
- )
- hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
- outputs = (hidden_states,)
- if use_cache:
- outputs = outputs + (past_key_value,) + attention_outputs
- else:
- outputs = outputs + attention_outputs
- return outputs # hidden-states, past_key_value, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
- class T5ClassificationHead(nn.Module):
- """Head for sentence-level classification tasks."""
- def __init__(self, config: T5Config):
- super().__init__()
- self.dense = nn.Linear(config.d_model, config.d_model)
- self.dropout = nn.Dropout(p=config.classifier_dropout)
- self.out_proj = nn.Linear(config.d_model, config.num_labels)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.dense(hidden_states)
- hidden_states = torch.tanh(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.out_proj(hidden_states)
- return hidden_states
- class T5PreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = T5Config
- load_tf_weights = load_tf_weights_in_t5
- base_model_prefix = "transformer"
- is_parallelizable = True
- supports_gradient_checkpointing = True
- _supports_quantized_cache = False # enc-dec models don't support yet
- _supports_static_cache = True
- _supports_cache_class = True
- _no_split_modules = ["T5Block"]
- _keep_in_fp32_modules = ["wo"]
- @property
- def dummy_inputs(self):
- input_ids = torch.tensor(DUMMY_INPUTS)
- input_mask = torch.tensor(DUMMY_MASK)
- dummy_inputs = {
- "decoder_input_ids": input_ids,
- "input_ids": input_ids,
- "decoder_attention_mask": input_mask,
- }
- return dummy_inputs
- def _init_weights(self, module):
- """Initialize the weights"""
- factor = self.config.initializer_factor # Used for testing weights initialization
- if isinstance(module, T5LayerNorm):
- module.weight.data.fill_(factor * 1.0)
- elif isinstance(
- module,
- (T5Model, T5ForConditionalGeneration, T5EncoderModel, T5ForQuestionAnswering),
- ):
- # Mesh TensorFlow embeddings initialization
- # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
- module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
- if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
- module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
- if hasattr(module, "qa_outputs"):
- module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
- module.qa_outputs.bias.data.zero_()
- elif isinstance(module, T5ForTokenClassification):
- if hasattr(module, "classifier"):
- module.classifier.weight.data.normal_(mean=0.0, std=factor * 1.0)
- module.classifier.bias.data.zero_()
- elif isinstance(module, T5ClassificationHead):
- module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
- if hasattr(module.dense, "bias") and module.dense.bias is not None:
- module.dense.bias.data.zero_()
- module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
- if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None:
- module.out_proj.bias.data.zero_()
- elif isinstance(module, T5DenseActDense):
- # Mesh TensorFlow FF initialization
- # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
- # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
- module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
- if hasattr(module.wi, "bias") and module.wi.bias is not None:
- module.wi.bias.data.zero_()
- module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
- if hasattr(module.wo, "bias") and module.wo.bias is not None:
- module.wo.bias.data.zero_()
- elif isinstance(module, T5DenseGatedActDense):
- module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
- if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
- module.wi_0.bias.data.zero_()
- module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
- if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
- module.wi_1.bias.data.zero_()
- module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
- if hasattr(module.wo, "bias") and module.wo.bias is not None:
- module.wo.bias.data.zero_()
- elif isinstance(module, T5Attention):
- # Mesh TensorFlow attention initialization to avoid scaling before softmax
- # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
- d_model = self.config.d_model
- key_value_proj_dim = self.config.d_kv
- n_heads = self.config.num_heads
- module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
- module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
- module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
- module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
- if module.has_relative_attention_bias:
- module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
- def _shift_right(self, input_ids):
- decoder_start_token_id = self.config.decoder_start_token_id
- pad_token_id = self.config.pad_token_id
- if decoder_start_token_id is None:
- raise ValueError(
- "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. "
- "See T5 docs for more information."
- )
- # shift inputs to the right
- if is_torch_fx_proxy(input_ids):
- # Item assignment is not supported natively for proxies.
- shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
- shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
- else:
- shifted_input_ids = input_ids.new_zeros(input_ids.shape)
- shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
- shifted_input_ids[..., 0] = decoder_start_token_id
- if pad_token_id is None:
- raise ValueError("self.model.config.pad_token_id has to be defined.")
- # replace possible -100 values in labels by `pad_token_id`
- shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
- return shifted_input_ids
- class T5Stack(T5PreTrainedModel):
- def __init__(self, config, embed_tokens=None):
- super().__init__(config)
- self.embed_tokens = embed_tokens
- self.is_decoder = config.is_decoder
- self.block = nn.ModuleList(
- [T5Block(config, has_relative_attention_bias=bool(i == 0), layer_idx=i) for i in range(config.num_layers)]
- )
- self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
- self.dropout = nn.Dropout(config.dropout_rate)
- # Initialize weights and apply final processing
- self.post_init()
- # Model parallel
- self.model_parallel = False
- self.device_map = None
- self.gradient_checkpointing = False
- @add_start_docstrings(PARALLELIZE_DOCSTRING)
- def parallelize(self, device_map=None):
- warnings.warn(
- "`T5Stack.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model"
- " with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
- " `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0,"
- " 'block.1': 1, ...}",
- FutureWarning,
- )
- # Check validity of device_map
- self.device_map = (
- get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map
- )
- assert_device_map(self.device_map, len(self.block))
- self.model_parallel = True
- self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
- self.last_device = "cuda:" + str(max(self.device_map.keys()))
- # Load onto devices
- for k, v in self.device_map.items():
- for layer in v:
- cuda_device = "cuda:" + str(k)
- self.block[layer] = self.block[layer].to(cuda_device)
- # Set embed_tokens to first layer
- self.embed_tokens = self.embed_tokens.to(self.first_device)
- # Set final layer norm to last device
- self.final_layer_norm = self.final_layer_norm.to(self.last_device)
- @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
- def deparallelize(self):
- warnings.warn(
- "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
- FutureWarning,
- )
- self.model_parallel = False
- self.device_map = None
- self.first_device = "cpu"
- self.last_device = "cpu"
- for i in range(len(self.block)):
- self.block[i] = self.block[i].to("cpu")
- self.embed_tokens = self.embed_tokens.to("cpu")
- self.final_layer_norm = self.final_layer_norm.to("cpu")
- torch.cuda.empty_cache()
- def get_input_embeddings(self):
- return self.embed_tokens
- def set_input_embeddings(self, new_embeddings):
- self.embed_tokens = new_embeddings
- def forward(
- self,
- input_ids=None,
- attention_mask=None,
- encoder_hidden_states=None,
- encoder_attention_mask=None,
- inputs_embeds=None,
- head_mask=None,
- cross_attn_head_mask=None,
- past_key_values=None,
- use_cache=None,
- output_attentions=None,
- output_hidden_states=None,
- return_dict=None,
- cache_position=None,
- ):
- # Model parallel
- if self.model_parallel:
- torch.cuda.set_device(self.first_device)
- self.embed_tokens = self.embed_tokens.to(self.first_device)
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if input_ids is not None and inputs_embeds is not None:
- err_msg_prefix = "decoder_" if self.is_decoder else ""
- raise ValueError(
- f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
- )
- elif input_ids is not None:
- input_shape = input_ids.size()
- input_ids = input_ids.view(-1, input_shape[-1])
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.size()[:-1]
- else:
- err_msg_prefix = "decoder_" if self.is_decoder else ""
- raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
- if self.gradient_checkpointing and self.training:
- if use_cache:
- logger.warning_once(
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
- )
- use_cache = False
- if inputs_embeds is None:
- if self.embed_tokens is None:
- raise ValueError("You have to initialize the model with valid token embeddings")
- inputs_embeds = self.embed_tokens(input_ids)
- batch_size, seq_length = input_shape
- if use_cache is True:
- if not self.is_decoder:
- raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder")
- # initialize past_key_values
- return_legacy_cache = False
- return_self_attention_cache = False
- if self.is_decoder and (use_cache or past_key_values is not None):
- if isinstance(past_key_values, Cache) and not isinstance(past_key_values, EncoderDecoderCache):
- return_self_attention_cache = True
- past_key_values = EncoderDecoderCache(past_key_values, DynamicCache())
- elif not isinstance(past_key_values, EncoderDecoderCache):
- return_legacy_cache = True
- logger.warning_once(
- "Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.48.0. "
- "You should pass an instance of `EncoderDecoderCache` instead, e.g. "
- "`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`."
- )
- past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values)
- elif past_key_values is None:
- past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache())
- elif not self.is_decoder:
- # do not pass cache object down the line for encoder stack
- # it messes indexing later in decoder-stack because cache object is modified in-place
- past_key_values = None
- past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0
- if cache_position is None:
- cache_position = torch.arange(
- past_key_values_length, past_key_values_length + seq_length, device=inputs_embeds.device
- )
- if attention_mask is None and not is_torchdynamo_compiling():
- # required mask seq length can be calculated via length of past cache
- mask_seq_length = past_key_values_length + seq_length
- attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
- if self.config.is_decoder:
- causal_mask = self._update_causal_mask(
- attention_mask,
- inputs_embeds,
- cache_position,
- past_key_values.self_attention_cache if past_key_values is not None else None,
- output_attentions,
- )
- elif attention_mask is not None:
- causal_mask = attention_mask[:, None, None, :]
- causal_mask = causal_mask.to(dtype=inputs_embeds.dtype)
- causal_mask = (1.0 - causal_mask) * torch.finfo(inputs_embeds.dtype).min
- else:
- causal_mask = None
- # If a 2D or 3D attention mask is provided for the cross-attention
- # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
- if self.is_decoder and encoder_hidden_states is not None:
- encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
- encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
- if encoder_attention_mask is None:
- encoder_attention_mask = torch.ones(
- encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long
- )
- encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
- else:
- encoder_extended_attention_mask = None
- # Prepare head mask if needed
- head_mask = self.get_head_mask(head_mask, self.config.num_layers)
- cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
- all_hidden_states = () if output_hidden_states else None
- all_attentions = () if output_attentions else None
- all_cross_attentions = () if (output_attentions and self.is_decoder) else None
- position_bias = None
- encoder_decoder_position_bias = None
- hidden_states = self.dropout(inputs_embeds)
- for i, layer_module in enumerate(self.block):
- layer_head_mask = head_mask[i]
- cross_attn_layer_head_mask = cross_attn_head_mask[i]
- # Model parallel
- if self.model_parallel:
- torch.cuda.set_device(hidden_states.device)
- # Ensure that attention_mask is always on the same device as hidden_states
- if causal_mask is not None:
- causal_mask = causal_mask.to(hidden_states.device)
- if position_bias is not None:
- position_bias = position_bias.to(hidden_states.device)
- if encoder_hidden_states is not None:
- encoder_hidden_states = encoder_hidden_states.to(hidden_states.device)
- if encoder_extended_attention_mask is not None:
- encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device)
- if encoder_decoder_position_bias is not None:
- encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device)
- if layer_head_mask is not None:
- layer_head_mask = layer_head_mask.to(hidden_states.device)
- if cross_attn_layer_head_mask is not None:
- cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device)
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- layer_module.forward,
- hidden_states,
- causal_mask,
- position_bias,
- encoder_hidden_states,
- encoder_extended_attention_mask,
- encoder_decoder_position_bias,
- layer_head_mask,
- cross_attn_layer_head_mask,
- None, # past_key_value is always None with gradient checkpointing
- use_cache,
- output_attentions,
- return_dict,
- cache_position,
- )
- else:
- layer_outputs = layer_module(
- hidden_states,
- attention_mask=causal_mask,
- position_bias=position_bias,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_extended_attention_mask,
- encoder_decoder_position_bias=encoder_decoder_position_bias,
- layer_head_mask=layer_head_mask,
- cross_attn_layer_head_mask=cross_attn_layer_head_mask,
- past_key_value=past_key_values,
- use_cache=use_cache,
- output_attentions=output_attentions,
- return_dict=return_dict,
- cache_position=cache_position,
- )
- # layer_outputs is a tuple with:
- # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
- if use_cache is False:
- layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
- hidden_states, next_decoder_cache = layer_outputs[:2]
- # We share the position biases between the layers - the first layer store them
- # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
- # (cross-attention position bias), (cross-attention weights)
- position_bias = layer_outputs[2]
- if self.is_decoder and encoder_hidden_states is not None:
- encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
- if output_attentions:
- all_attentions = all_attentions + (layer_outputs[3],)
- if self.is_decoder:
- all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
- # Model Parallel: If it's the last layer for that device, put things on the next device
- if self.model_parallel:
- for k, v in self.device_map.items():
- if i == v[-1] and "cuda:" + str(k) != self.last_device:
- hidden_states = hidden_states.to("cuda:" + str(k + 1))
- hidden_states = self.final_layer_norm(hidden_states)
- hidden_states = self.dropout(hidden_states)
- # Add last layer
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- next_cache = next_decoder_cache if use_cache else None
- if return_self_attention_cache:
- next_cache = past_key_values.self_attention_cache
- if return_legacy_cache:
- next_cache = past_key_values.to_legacy_cache()
- if not return_dict:
- return tuple(
- v
- for v in [
- hidden_states,
- next_cache,
- all_hidden_states,
- all_attentions,
- all_cross_attentions,
- ]
- if v is not None
- )
- return BaseModelOutputWithPastAndCrossAttentions(
- last_hidden_state=hidden_states,
- past_key_values=next_cache,
- hidden_states=all_hidden_states,
- attentions=all_attentions,
- cross_attentions=all_cross_attentions,
- )
- # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
- def _update_causal_mask(
- self,
- attention_mask: torch.Tensor,
- input_tensor: torch.Tensor,
- cache_position: torch.Tensor,
- past_key_values: Cache,
- output_attentions: bool,
- ):
- if self.config._attn_implementation == "flash_attention_2":
- if attention_mask is not None and 0.0 in attention_mask:
- return attention_mask
- return None
- # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
- # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
- # to infer the attention mask.
- past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
- using_static_cache = isinstance(past_key_values, StaticCache)
- # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
- if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
- if AttentionMaskConverter._ignore_causal_mask_sdpa(
- attention_mask,
- inputs_embeds=input_tensor,
- past_key_values_length=past_seen_tokens,
- is_training=self.training,
- ):
- return None
- dtype, device = input_tensor.dtype, input_tensor.device
- sequence_length = input_tensor.shape[1]
- if using_static_cache:
- target_length = past_key_values.get_max_cache_shape()
- else:
- target_length = (
- attention_mask.shape[-1]
- if isinstance(attention_mask, torch.Tensor)
- else past_seen_tokens + sequence_length + 1
- )
- # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
- causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
- attention_mask,
- sequence_length=sequence_length,
- target_length=target_length,
- dtype=dtype,
- device=device,
- cache_position=cache_position,
- batch_size=input_tensor.shape[0],
- )
- if (
- self.config._attn_implementation == "sdpa"
- and attention_mask is not None
- and attention_mask.device.type == "cuda"
- and not output_attentions
- ):
- # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
- # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
- # Details: https://github.com/pytorch/pytorch/issues/110213
- min_dtype = torch.finfo(dtype).min
- causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
- return causal_mask
- @staticmethod
- # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel._prepare_4d_causal_attention_mask_with_cache_position
- def _prepare_4d_causal_attention_mask_with_cache_position(
- attention_mask: torch.Tensor,
- sequence_length: int,
- target_length: int,
- dtype: torch.dtype,
- device: torch.device,
- cache_position: torch.Tensor,
- batch_size: int,
- **kwargs,
- ):
- """
- Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
- `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
- Args:
- attention_mask (`torch.Tensor`):
- A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
- `(batch_size, 1, query_length, key_value_length)`.
- sequence_length (`int`):
- The sequence length being processed.
- target_length (`int`):
- The target length: when generating with static cache, the mask should be as long as the static cache,
- to account for the 0 padding, the part of the cache that is not filled yet.
- dtype (`torch.dtype`):
- The dtype to use for the 4D attention mask.
- device (`torch.device`):
- The device to plcae the 4D attention mask on.
- cache_position (`torch.Tensor`):
- Indices depicting the position of the input sequence tokens in the sequence.
- batch_size (`torch.Tensor`):
- Batch size.
- """
- if attention_mask is not None and attention_mask.dim() == 4:
- # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
- causal_mask = attention_mask
- else:
- min_dtype = torch.finfo(dtype).min
- causal_mask = torch.full(
- (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
- )
- if sequence_length != 1:
- causal_mask = torch.triu(causal_mask, diagonal=1)
- causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
- causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
- if attention_mask is not None:
- causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
- mask_length = attention_mask.shape[-1]
- padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
- padding_mask = padding_mask == 0
- causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
- padding_mask, min_dtype
- )
- return causal_mask
- T5_START_DOCSTRING = r"""
- The T5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text
- Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
- Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a
- text-to-text denoising generative setting.
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
- Parameters:
- config ([`T5Config`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- T5_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you
- should be able to pad the inputs on both the right and the left.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for detail.
- [What are input IDs?](../glossary#input-ids)
- To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training).
- attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
- Indices of decoder input sequence tokens in the vocabulary.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are decoder input IDs?](../glossary#decoder-input-ids)
- T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
- is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
- To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5
- Training](./t5#training).
- decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
- Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
- be used by default.
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
- 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
- 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
- `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
- Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
- `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
- the output of the last layer of the encoder. Used in the cross-attention of the decoder.
- past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
- Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
- model's internal embedding lookup matrix.
- decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
- representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
- input (see `past_key_values`). This is useful if you want more control over how to convert
- `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
- If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
- of `inputs_embeds`.
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
- `past_key_values`).
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
- Indices depicting the position of the input sequence tokens in the sequence. It is used to update the
- cache in the correct position and to infer the complete sequence length.
- """
- T5_ENCODER_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
- Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you
- should be able to pad the inputs on both the right and the left.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for detail.
- To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training).
- attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
- model's internal embedding lookup matrix.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- # Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
- __HEAD_MASK_WARNING_MSG = """
- The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently,
- `decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions.
- If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers,
- num_heads)`.
- """
- @add_start_docstrings(
- "The bare T5 Model transformer outputting raw hidden-states without any specific head on top.",
- T5_START_DOCSTRING,
- )
- class T5Model(T5PreTrainedModel):
- _keys_to_ignore_on_load_unexpected = [
- "decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
- ]
- _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
- def __init__(self, config: T5Config):
- super().__init__(config)
- self.shared = nn.Embedding(config.vocab_size, config.d_model)
- encoder_config = copy.deepcopy(config)
- encoder_config.is_decoder = False
- encoder_config.use_cache = False
- encoder_config.is_encoder_decoder = False
- self.encoder = T5Stack(encoder_config, self.shared)
- decoder_config = copy.deepcopy(config)
- decoder_config.is_decoder = True
- decoder_config.is_encoder_decoder = False
- decoder_config.num_layers = config.num_decoder_layers
- self.decoder = T5Stack(decoder_config, self.shared)
- # Initialize weights and apply final processing
- self.post_init()
- # Model parallel
- self.model_parallel = False
- self.device_map = None
- @add_start_docstrings(PARALLELIZE_DOCSTRING)
- def parallelize(self, device_map=None):
- warnings.warn(
- "`T5Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model"
- " with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
- " `device_map` but it needs to be a dictionary module_name to device, so for instance {'encoder.block.0':"
- " 0, 'encoder.block.1': 1, ...}",
- FutureWarning,
- )
- self.device_map = (
- get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
- if device_map is None
- else device_map
- )
- assert_device_map(self.device_map, len(self.encoder.block))
- self.encoder.parallelize(self.device_map)
- self.decoder.parallelize(self.device_map)
- self.model_parallel = True
- @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
- def deparallelize(self):
- warnings.warn(
- "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
- FutureWarning,
- )
- self.encoder.deparallelize()
- self.decoder.deparallelize()
- self.encoder = self.encoder.to("cpu")
- self.decoder = self.decoder.to("cpu")
- self.model_parallel = False
- self.device_map = None
- torch.cuda.empty_cache()
- def get_input_embeddings(self):
- return self.shared
- def set_input_embeddings(self, new_embeddings):
- self.shared = new_embeddings
- self.encoder.set_input_embeddings(new_embeddings)
- self.decoder.set_input_embeddings(new_embeddings)
- def _tie_weights(self):
- if self.config.tie_word_embeddings:
- self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
- self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
- def get_encoder(self):
- return self.encoder
- def get_decoder(self):
- return self.decoder
- def _prune_heads(self, heads_to_prune):
- """
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
- class PreTrainedModel
- """
- for layer, heads in heads_to_prune.items():
- self.encoder.layer[layer].attention.prune_heads(heads)
- @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- decoder_input_ids: Optional[torch.LongTensor] = None,
- decoder_attention_mask: Optional[torch.BoolTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- decoder_head_mask: Optional[torch.FloatTensor] = None,
- cross_attn_head_mask: Optional[torch.Tensor] = None,
- encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
- past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- decoder_inputs_embeds: Optional[torch.Tensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- cache_position: Optional[torch.LongTensor] = None,
- ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
- r"""
- Returns:
- Example:
- ```python
- >>> from transformers import AutoTokenizer, T5Model
- >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small")
- >>> model = T5Model.from_pretrained("google-t5/t5-small")
- >>> input_ids = tokenizer(
- ... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
- ... ).input_ids # Batch size 1
- >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
- >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model.
- >>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg.
- >>> decoder_input_ids = model._shift_right(decoder_input_ids)
- >>> # forward pass
- >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
- >>> last_hidden_states = outputs.last_hidden_state
- ```"""
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
- if head_mask is not None and decoder_head_mask is None:
- if self.config.num_layers == self.config.num_decoder_layers:
- warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
- decoder_head_mask = head_mask
- # Encode if needed (training, first prediction pass)
- if encoder_outputs is None:
- encoder_outputs = self.encoder(
- input_ids=input_ids,
- attention_mask=attention_mask,
- inputs_embeds=inputs_embeds,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
- encoder_outputs = BaseModelOutput(
- last_hidden_state=encoder_outputs[0],
- hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
- attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
- )
- hidden_states = encoder_outputs[0]
- # Set device for model parallelism
- if self.model_parallel:
- torch.cuda.set_device(self.decoder.first_device)
- hidden_states = hidden_states.to(self.decoder.first_device)
- if decoder_input_ids is not None:
- decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
- if attention_mask is not None:
- attention_mask = attention_mask.to(self.decoder.first_device)
- if decoder_attention_mask is not None:
- decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
- # Decode
- decoder_outputs = self.decoder(
- input_ids=decoder_input_ids,
- attention_mask=decoder_attention_mask,
- inputs_embeds=decoder_inputs_embeds,
- past_key_values=past_key_values,
- encoder_hidden_states=hidden_states,
- encoder_attention_mask=attention_mask,
- head_mask=decoder_head_mask,
- cross_attn_head_mask=cross_attn_head_mask,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- cache_position=cache_position,
- )
- if not return_dict:
- return decoder_outputs + encoder_outputs
- return Seq2SeqModelOutput(
- last_hidden_state=decoder_outputs.last_hidden_state,
- past_key_values=decoder_outputs.past_key_values,
- decoder_hidden_states=decoder_outputs.hidden_states,
- decoder_attentions=decoder_outputs.attentions,
- cross_attentions=decoder_outputs.cross_attentions,
- encoder_last_hidden_state=encoder_outputs.last_hidden_state,
- encoder_hidden_states=encoder_outputs.hidden_states,
- encoder_attentions=encoder_outputs.attentions,
- )
- @add_start_docstrings("""T5 Model with a `language modeling` head on top.""", T5_START_DOCSTRING)
- class T5ForConditionalGeneration(T5PreTrainedModel, GenerationMixin):
- _keys_to_ignore_on_load_unexpected = [
- "decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
- ]
- _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
- def __init__(self, config: T5Config):
- super().__init__(config)
- self.model_dim = config.d_model
- self.shared = nn.Embedding(config.vocab_size, config.d_model)
- encoder_config = copy.deepcopy(config)
- encoder_config.is_decoder = False
- encoder_config.use_cache = False
- encoder_config.is_encoder_decoder = False
- self.encoder = T5Stack(encoder_config, self.shared)
- decoder_config = copy.deepcopy(config)
- decoder_config.is_decoder = True
- decoder_config.is_encoder_decoder = False
- decoder_config.num_layers = config.num_decoder_layers
- self.decoder = T5Stack(decoder_config, self.shared)
- self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
- # Initialize weights and apply final processing
- self.post_init()
- # Model parallel
- self.model_parallel = False
- self.device_map = None
- @add_start_docstrings(PARALLELIZE_DOCSTRING)
- def parallelize(self, device_map=None):
- warnings.warn(
- "`T5ForConditionalGeneration.parallelize` is deprecated and will be removed in v5 of Transformers, you"
- " should load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also"
- " provide your own `device_map` but it needs to be a dictionary module_name to device, so for instance"
- " {'encoder.block.0': 0, 'encoder.block.1': 1, ...}",
- FutureWarning,
- )
- self.device_map = (
- get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
- if device_map is None
- else device_map
- )
- assert_device_map(self.device_map, len(self.encoder.block))
- self.encoder.parallelize(self.device_map)
- self.decoder.parallelize(self.device_map)
- self.lm_head = self.lm_head.to(self.decoder.first_device)
- self.model_parallel = True
- @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
- def deparallelize(self):
- warnings.warn(
- "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
- FutureWarning,
- )
- self.encoder.deparallelize()
- self.decoder.deparallelize()
- self.encoder = self.encoder.to("cpu")
- self.decoder = self.decoder.to("cpu")
- self.lm_head = self.lm_head.to("cpu")
- self.model_parallel = False
- self.device_map = None
- torch.cuda.empty_cache()
- def get_input_embeddings(self):
- return self.shared
- def set_input_embeddings(self, new_embeddings):
- self.shared = new_embeddings
- self.encoder.set_input_embeddings(new_embeddings)
- self.decoder.set_input_embeddings(new_embeddings)
- def _tie_weights(self):
- if self.config.tie_word_embeddings:
- self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
- self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
- def set_output_embeddings(self, new_embeddings):
- self.lm_head = new_embeddings
- def get_output_embeddings(self):
- return self.lm_head
- def get_encoder(self):
- return self.encoder
- def get_decoder(self):
- return self.decoder
- @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- decoder_input_ids: Optional[torch.LongTensor] = None,
- decoder_attention_mask: Optional[torch.BoolTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- decoder_head_mask: Optional[torch.FloatTensor] = None,
- cross_attn_head_mask: Optional[torch.Tensor] = None,
- encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
- past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- cache_position: Optional[torch.LongTensor] = None,
- ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
- config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
- labels in `[0, ..., config.vocab_size]`
- Returns:
- Examples:
- ```python
- >>> from transformers import AutoTokenizer, T5ForConditionalGeneration
- >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small")
- >>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
- >>> # training
- >>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
- >>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
- >>> outputs = model(input_ids=input_ids, labels=labels)
- >>> loss = outputs.loss
- >>> logits = outputs.logits
- >>> # inference
- >>> input_ids = tokenizer(
- ... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
- ... ).input_ids # Batch size 1
- >>> outputs = model.generate(input_ids)
- >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
- >>> # studies have shown that owning a dog is good for you.
- ```"""
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
- if head_mask is not None and decoder_head_mask is None:
- if self.config.num_layers == self.config.num_decoder_layers:
- warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
- decoder_head_mask = head_mask
- # Encode if needed (training, first prediction pass)
- if encoder_outputs is None:
- # Convert encoder inputs in embeddings if needed
- encoder_outputs = self.encoder(
- input_ids=input_ids,
- attention_mask=attention_mask,
- inputs_embeds=inputs_embeds,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
- encoder_outputs = BaseModelOutput(
- last_hidden_state=encoder_outputs[0],
- hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
- attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
- )
- hidden_states = encoder_outputs[0]
- if self.model_parallel:
- torch.cuda.set_device(self.decoder.first_device)
- if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
- # get decoder inputs from shifting lm labels to the right
- decoder_input_ids = self._shift_right(labels)
- # Set device for model parallelism
- if self.model_parallel:
- torch.cuda.set_device(self.decoder.first_device)
- hidden_states = hidden_states.to(self.decoder.first_device)
- if decoder_input_ids is not None:
- decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
- if attention_mask is not None:
- attention_mask = attention_mask.to(self.decoder.first_device)
- if decoder_attention_mask is not None:
- decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
- # Decode
- decoder_outputs = self.decoder(
- input_ids=decoder_input_ids,
- attention_mask=decoder_attention_mask,
- inputs_embeds=decoder_inputs_embeds,
- past_key_values=past_key_values,
- encoder_hidden_states=hidden_states,
- encoder_attention_mask=attention_mask,
- head_mask=decoder_head_mask,
- cross_attn_head_mask=cross_attn_head_mask,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- cache_position=cache_position,
- )
- sequence_output = decoder_outputs[0]
- # Set device for model parallelism
- if self.model_parallel:
- torch.cuda.set_device(self.encoder.first_device)
- self.lm_head = self.lm_head.to(self.encoder.first_device)
- sequence_output = sequence_output.to(self.lm_head.weight.device)
- if self.config.tie_word_embeddings:
- # Rescale output before projecting on vocab
- # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
- sequence_output = sequence_output * (self.model_dim**-0.5)
- lm_logits = self.lm_head(sequence_output)
- loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss(ignore_index=-100)
- # move labels to correct device to enable PP
- labels = labels.to(lm_logits.device)
- loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
- # TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
- if not return_dict:
- output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
- return ((loss,) + output) if loss is not None else output
- return Seq2SeqLMOutput(
- loss=loss,
- logits=lm_logits,
- past_key_values=decoder_outputs.past_key_values,
- decoder_hidden_states=decoder_outputs.hidden_states,
- decoder_attentions=decoder_outputs.attentions,
- cross_attentions=decoder_outputs.cross_attentions,
- encoder_last_hidden_state=encoder_outputs.last_hidden_state,
- encoder_hidden_states=encoder_outputs.hidden_states,
- encoder_attentions=encoder_outputs.attentions,
- )
- def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
- return self._shift_right(labels)
- def _reorder_cache(self, past_key_values, beam_idx):
- # if decoder past is not included in output
- # speedy decoding is disabled and no need to reorder
- if past_key_values is None:
- logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
- return past_key_values
- reordered_decoder_past = ()
- for layer_past_states in past_key_values:
- # get the correct batch idx from layer past batch dim
- # batch dim of `past` is at 2nd position
- reordered_layer_past_states = ()
- for layer_past_state in layer_past_states:
- # need to set correct `past` for each of the four key / value states
- reordered_layer_past_states = reordered_layer_past_states + (
- layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
- )
- if reordered_layer_past_states[0].shape != layer_past_states[0].shape:
- raise ValueError(
- f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched"
- )
- if len(reordered_layer_past_states) != len(layer_past_states):
- raise ValueError(
- f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched"
- )
- reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
- return reordered_decoder_past
- @add_start_docstrings(
- "The bare T5 Model transformer outputting encoder's raw hidden-states without any specific head on top.",
- T5_START_DOCSTRING,
- )
- class T5EncoderModel(T5PreTrainedModel):
- _tied_weights_keys = ["encoder.embed_tokens.weight"]
- _keys_to_ignore_on_load_unexpected = [r"decoder"]
- def __init__(self, config: T5Config):
- super().__init__(config)
- self.shared = nn.Embedding(config.vocab_size, config.d_model)
- encoder_config = copy.deepcopy(config)
- encoder_config.use_cache = False
- encoder_config.is_encoder_decoder = False
- self.encoder = T5Stack(encoder_config, self.shared)
- # Initialize weights and apply final processing
- self.post_init()
- # Model parallel
- self.model_parallel = False
- self.device_map = None
- @add_start_docstrings(PARALLELIZE_DOCSTRING)
- def parallelize(self, device_map=None):
- warnings.warn(
- "`T5EncoderModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
- " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
- " `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0,"
- " 'block.1': 1, ...}",
- FutureWarning,
- )
- self.device_map = (
- get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
- if device_map is None
- else device_map
- )
- assert_device_map(self.device_map, len(self.encoder.block))
- self.encoder.parallelize(self.device_map)
- self.model_parallel = True
- @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
- def deparallelize(self):
- warnings.warn(
- "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
- FutureWarning,
- )
- self.encoder.deparallelize()
- self.encoder = self.encoder.to("cpu")
- self.model_parallel = False
- self.device_map = None
- torch.cuda.empty_cache()
- def get_input_embeddings(self):
- return self.shared
- def set_input_embeddings(self, new_embeddings):
- self.shared = new_embeddings
- self.encoder.set_input_embeddings(new_embeddings)
- def _tie_weights(self):
- if self.config.tie_word_embeddings:
- self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
- def get_encoder(self):
- return self.encoder
- def _prune_heads(self, heads_to_prune):
- """
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
- class PreTrainedModel
- """
- for layer, heads in heads_to_prune.items():
- self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads)
- @add_start_docstrings_to_model_forward(T5_ENCODER_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
- r"""
- Returns:
- Example:
- ```python
- >>> from transformers import AutoTokenizer, T5EncoderModel
- >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small")
- >>> model = T5EncoderModel.from_pretrained("google-t5/t5-small")
- >>> input_ids = tokenizer(
- ... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
- ... ).input_ids # Batch size 1
- >>> outputs = model(input_ids=input_ids)
- >>> last_hidden_states = outputs.last_hidden_state
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- encoder_outputs = self.encoder(
- input_ids=input_ids,
- attention_mask=attention_mask,
- inputs_embeds=inputs_embeds,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- return encoder_outputs
- @add_start_docstrings(
- """
- T5 model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
- tasks.
- """,
- T5_START_DOCSTRING,
- )
- class T5ForSequenceClassification(T5PreTrainedModel):
- _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"]
- _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
- def __init__(self, config: T5Config):
- super().__init__(config)
- self.transformer = T5Model(config)
- self.classification_head = T5ClassificationHead(config)
- # Initialize weights and apply final processing
- self.post_init()
- self.model_parallel = False
- @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=Seq2SeqSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: torch.LongTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- decoder_input_ids: Optional[torch.LongTensor] = None,
- decoder_attention_mask: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- decoder_head_mask: Optional[torch.Tensor] = None,
- cross_attn_head_mask: Optional[torch.Tensor] = None,
- encoder_outputs: Optional[List[torch.FloatTensor]] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- Returns:
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- if labels is not None:
- use_cache = False
- if input_ids is None and inputs_embeds is not None:
- raise NotImplementedError(
- f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
- )
- # Copied from models.bart.modeling_bart.BartModel.forward different to other models, T5 automatically creates
- # decoder_input_ids from input_ids if no decoder_input_ids are provided
- if decoder_input_ids is None and decoder_inputs_embeds is None:
- if input_ids is None:
- raise ValueError(
- "If no `decoder_input_ids` or `decoder_inputs_embeds` are "
- "passed, `input_ids` cannot be `None`. Please pass either "
- "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
- )
- decoder_input_ids = self._shift_right(input_ids)
- outputs = self.transformer(
- input_ids,
- attention_mask=attention_mask,
- decoder_input_ids=decoder_input_ids,
- decoder_attention_mask=decoder_attention_mask,
- head_mask=head_mask,
- decoder_head_mask=decoder_head_mask,
- cross_attn_head_mask=cross_attn_head_mask,
- encoder_outputs=encoder_outputs,
- inputs_embeds=inputs_embeds,
- decoder_inputs_embeds=decoder_inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device)
- if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
- raise ValueError("All examples must have the same number of <eos> tokens.")
- batch_size, _, hidden_size = sequence_output.shape
- sentence_representation = sequence_output[eos_mask, :].view(batch_size, -1, hidden_size)[:, -1, :]
- logits = self.classification_head(sentence_representation)
- loss = None
- if labels is not None:
- labels = labels.to(logits.device)
- if self.config.problem_type is None:
- if self.config.num_labels == 1:
- self.config.problem_type = "regression"
- elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
- self.config.problem_type = "single_label_classification"
- else:
- self.config.problem_type = "multi_label_classification"
- if self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.config.num_labels == 1:
- loss = loss_fct(logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(logits, labels)
- if not return_dict:
- output = (logits,) + outputs[1:]
- return ((loss,) + output) if loss is not None else output
- return Seq2SeqSequenceClassifierOutput(
- loss=loss,
- logits=logits,
- past_key_values=outputs.past_key_values,
- decoder_hidden_states=outputs.decoder_hidden_states,
- decoder_attentions=outputs.decoder_attentions,
- cross_attentions=outputs.cross_attentions,
- encoder_last_hidden_state=outputs.encoder_last_hidden_state,
- encoder_hidden_states=outputs.encoder_hidden_states,
- encoder_attentions=outputs.encoder_attentions,
- )
- @add_start_docstrings(
- """
- T5 Encoder Model with a token classification head on top (a linear layer on top of the hidden-states output)
- e.g. for Named-Entity-Recognition (NER) tasks.
- """,
- T5_START_DOCSTRING,
- )
- class T5ForTokenClassification(T5PreTrainedModel):
- _tied_weights_keys = ["transformer.encoder.embed_tokens.weight"]
- def __init__(self, config: T5Config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.transformer = T5EncoderModel(config)
- self.dropout = nn.Dropout(config.classifier_dropout)
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
- Returns:
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.transformer(
- input_ids,
- attention_mask=attention_mask,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- hidden_states = outputs[0]
- hidden_states = self.dropout(hidden_states)
- logits = self.classifier(hidden_states)
- loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- if not return_dict:
- output = (logits, outputs[2:-1])
- return ((loss,) + output) if loss is not None else output
- return TokenClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """
- T5 Model with a span classification head on top for extractive question-answering tasks like SQuAD (linear layers
- on top of the hidden-states output to compute `span start logits` and `span end logits`).
- """,
- T5_START_DOCSTRING,
- )
- class T5ForQuestionAnswering(T5PreTrainedModel):
- _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"]
- _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
- def __init__(self, config: T5Config):
- super().__init__(config)
- self.model_dim = config.d_model
- self.shared = nn.Embedding(config.vocab_size, config.d_model)
- encoder_config = copy.deepcopy(config)
- encoder_config.is_decoder = False
- encoder_config.use_cache = False
- encoder_config.is_encoder_decoder = False
- self.encoder = T5Stack(encoder_config, self.shared)
- decoder_config = copy.deepcopy(config)
- decoder_config.is_decoder = True
- decoder_config.is_encoder_decoder = False
- decoder_config.num_layers = config.num_decoder_layers
- self.decoder = T5Stack(decoder_config, self.shared)
- self.num_labels = config.num_labels
- self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
- # Initialize weights and apply final processing
- self.post_init()
- self.model_parallel = False
- def get_input_embeddings(self):
- return self.shared
- def set_input_embeddings(self, new_embeddings):
- self.shared = new_embeddings
- self.encoder.set_input_embeddings(new_embeddings)
- self.decoder.set_input_embeddings(new_embeddings)
- def _tie_weights(self):
- if self.config.tie_word_embeddings:
- self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
- self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
- def get_encoder(self):
- return self.encoder
- def get_decoder(self):
- return self.decoder
- @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=Seq2SeqQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- decoder_input_ids: Optional[torch.LongTensor] = None,
- decoder_attention_mask: Optional[torch.BoolTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- decoder_head_mask: Optional[torch.FloatTensor] = None,
- cross_attn_head_mask: Optional[torch.Tensor] = None,
- encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
- start_positions: Optional[torch.LongTensor] = None,
- end_positions: Optional[torch.LongTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.FloatTensor], Seq2SeqQuestionAnsweringModelOutput]:
- r"""
- start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the start of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
- are not taken into account for computing the loss.
- end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the end of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
- are not taken into account for computing the loss.
- Returns:
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- if start_positions is not None and end_positions is not None:
- use_cache = False
- # Copied from models.bart.modeling_bart.BartModel.forward
- # different to other models, T5 automatically creates decoder_input_ids from
- # input_ids if no decoder_input_ids are provided
- if decoder_input_ids is None and decoder_inputs_embeds is None:
- if input_ids is None:
- raise ValueError(
- "If no `decoder_input_ids` or `decoder_inputs_embeds` are "
- "passed, `input_ids` cannot be `None`. Please pass either "
- "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
- )
- decoder_input_ids = self._shift_right(input_ids)
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
- if head_mask is not None and decoder_head_mask is None:
- if self.config.num_layers == self.config.num_decoder_layers:
- warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
- decoder_head_mask = head_mask
- # Encode if needed (training, first prediction pass)
- if encoder_outputs is None:
- encoder_outputs = self.encoder(
- input_ids=input_ids,
- attention_mask=attention_mask,
- inputs_embeds=inputs_embeds,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
- encoder_outputs = BaseModelOutput(
- last_hidden_state=encoder_outputs[0],
- hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
- attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
- )
- hidden_states = encoder_outputs[0]
- # Decode
- decoder_outputs = self.decoder(
- input_ids=decoder_input_ids,
- attention_mask=decoder_attention_mask,
- inputs_embeds=decoder_inputs_embeds,
- past_key_values=None,
- encoder_hidden_states=hidden_states,
- encoder_attention_mask=attention_mask,
- head_mask=decoder_head_mask,
- cross_attn_head_mask=cross_attn_head_mask,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = decoder_outputs[0]
- logits = self.qa_outputs(sequence_output)
- start_logits, end_logits = logits.split(1, dim=-1)
- start_logits = start_logits.squeeze(-1).contiguous()
- end_logits = end_logits.squeeze(-1).contiguous()
- total_loss = None
- if start_positions is not None and end_positions is not None:
- # If we are on multi-GPU, split add a dimension
- if len(start_positions.size()) > 1:
- start_positions = start_positions.squeeze(-1).to(start_logits.device)
- if len(end_positions.size()) > 1:
- end_positions = end_positions.squeeze(-1).to(end_logits.device)
- # sometimes the start/end positions are outside our model inputs, we ignore these terms
- ignored_index = start_logits.size(1)
- start_positions = start_positions.clamp(0, ignored_index)
- end_positions = end_positions.clamp(0, ignored_index)
- loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
- start_loss = loss_fct(start_logits, start_positions)
- end_loss = loss_fct(end_logits, end_positions)
- total_loss = (start_loss + end_loss) / 2
- if not return_dict:
- output = (start_logits, end_logits) + decoder_outputs[1:] + encoder_outputs
- return ((total_loss,) + output) if total_loss is not None else output
- return Seq2SeqQuestionAnsweringModelOutput(
- loss=total_loss,
- start_logits=start_logits,
- end_logits=end_logits,
- past_key_values=decoder_outputs.past_key_values,
- decoder_hidden_states=decoder_outputs.hidden_states,
- decoder_attentions=decoder_outputs.attentions,
- cross_attentions=decoder_outputs.cross_attentions,
- encoder_last_hidden_state=encoder_outputs.last_hidden_state,
- encoder_hidden_states=encoder_outputs.hidden_states,
- encoder_attentions=encoder_outputs.attentions,
- )
|