| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233 |
- # coding=utf-8
- # Copyright 2018 T5 Authors and HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Tokenization class for model T5."""
- import os
- import re
- import warnings
- from shutil import copyfile
- from typing import List, Optional, Tuple
- from ...tokenization_utils_fast import PreTrainedTokenizerFast
- from ...utils import is_sentencepiece_available, logging
- if is_sentencepiece_available():
- from .tokenization_t5 import T5Tokenizer
- else:
- T5Tokenizer = None
- logger = logging.get_logger(__name__)
- VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
- # TODO(PVP) - this should be removed in Transformers v5
- class T5TokenizerFast(PreTrainedTokenizerFast):
- """
- Construct a "fast" T5 tokenizer (backed by HuggingFace's *tokenizers* library). Based on
- [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models).
- This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
- refer to this superclass for more information regarding those methods.
- Args:
- vocab_file (`str`):
- [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
- contains the vocabulary necessary to instantiate a tokenizer.
- eos_token (`str`, *optional*, defaults to `"</s>"`):
- The end of sequence token.
- <Tip>
- When building a sequence using special tokens, this is not the token that is used for the end of sequence.
- The token used is the `sep_token`.
- </Tip>
- unk_token (`str`, *optional*, defaults to `"<unk>"`):
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
- token instead.
- pad_token (`str`, *optional*, defaults to `"<pad>"`):
- The token used for padding, for example when batching sequences of different lengths.
- extra_ids (`int`, *optional*, defaults to 100):
- Add a number of extra ids added to the vocabulary for use as sentinels. These tokens are accessible as
- "<extra_id_{%d}>" where "{%d}" is a number between 0 and extra_ids-1. These tokens can be retrieved by
- calling get_sentinel_tokens method and token ids can be by calling get_sentinel_token_ids method
- additional_special_tokens (`List[str]`, *optional*):
- Additional special tokens used by the tokenizer.
- add_prefix_space (`bool`, *optional*):
- Whether or not the tokenizer should automatically add a prefix space
- from_slow (`book`, *optional*, defaults to `False`):
- Whether or not the tokenizer should be converted from a slow one. If `add_prefix_space` is set, this will be set to `True`.
- """
- vocab_files_names = VOCAB_FILES_NAMES
- model_input_names = ["input_ids", "attention_mask"]
- slow_tokenizer_class = T5Tokenizer
- prefix_tokens: List[int] = []
- def __init__(
- self,
- vocab_file=None,
- tokenizer_file=None,
- eos_token="</s>",
- unk_token="<unk>",
- pad_token="<pad>",
- extra_ids=100,
- additional_special_tokens=None,
- add_prefix_space=None,
- **kwargs,
- ):
- # Add extra_ids to the special token list
- if additional_special_tokens is not None:
- extra_tokens = [x for x in additional_special_tokens if "<extra_id_" in str(x)]
- if len(extra_tokens) < 1:
- additional_special_tokens += [f"<extra_id_{i}>" for i in range(extra_ids)]
- elif extra_ids > 0 and extra_ids != len(extra_tokens):
- raise ValueError(
- f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
- " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids"
- " tokens"
- )
- else:
- extra_tokens = [f"<extra_id_{i}>" for i in range(extra_ids)]
- additional_special_tokens = extra_tokens
- if add_prefix_space is not None:
- logger.warning_once(
- "You set `add_prefix_space`. The tokenizer needs to be converted from the slow tokenizers"
- )
- kwargs["from_slow"] = True
- super().__init__(
- vocab_file,
- tokenizer_file=tokenizer_file,
- eos_token=eos_token,
- unk_token=unk_token,
- pad_token=pad_token,
- extra_ids=extra_ids,
- additional_special_tokens=additional_special_tokens,
- **kwargs,
- )
- self.vocab_file = vocab_file
- self._extra_ids = extra_ids
- @property
- def can_save_slow_tokenizer(self) -> bool:
- return os.path.isfile(self.vocab_file) if self.vocab_file else False
- @staticmethod
- def _eventually_correct_t5_max_length(pretrained_model_name_or_path, max_model_length, init_max_model_length):
- if pretrained_model_name_or_path in T5TokenizerFast.max_model_input_sizes:
- deprecated_max_model_length = T5TokenizerFast.max_model_input_sizes[pretrained_model_name_or_path]
- if init_max_model_length is not None and init_max_model_length != max_model_length:
- return init_max_model_length
- elif init_max_model_length is None:
- warnings.warn(
- "This tokenizer was incorrectly instantiated with a model max length of"
- f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this"
- " behavior is kept to avoid breaking backwards compatibility when padding/encoding with"
- " `truncation is True`.\n- Be aware that you SHOULD NOT rely on"
- f" {pretrained_model_name_or_path} automatically truncating your input to"
- f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences"
- f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with"
- " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please"
- " instantiate this tokenizer with `model_max_length` set to your preferred value.",
- FutureWarning,
- )
- return max_model_length
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
- if not self.can_save_slow_tokenizer:
- raise ValueError(
- "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
- "tokenizer."
- )
- if not os.path.isdir(save_directory):
- logger.error(f"Vocabulary path ({save_directory}) should be a directory")
- return
- out_vocab_file = os.path.join(
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
- )
- if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
- copyfile(self.vocab_file, out_vocab_file)
- logger.info(f"Copy vocab file to {out_vocab_file}")
- return (out_vocab_file,)
- def build_inputs_with_special_tokens(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
- adding special tokens. A sequence has the following format:
- - single sequence: `X </s>`
- - pair of sequences: `A </s> B </s>`
- Args:
- token_ids_0 (`List[int]`):
- List of IDs to which the special tokens will be added.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
- """
- token_ids_0 = token_ids_0 + [self.eos_token_id]
- if token_ids_1 is None:
- return self.prefix_tokens + token_ids_0
- else:
- token_ids_1 = token_ids_1 + [self.eos_token_id]
- return self.prefix_tokens + token_ids_0 + token_ids_1
- def create_token_type_ids_from_sequences(
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
- ) -> List[int]:
- """
- Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
- use of token type ids, therefore a list of zeros is returned.
- Args:
- token_ids_0 (`List[int]`):
- List of IDs.
- token_ids_1 (`List[int]`, *optional*):
- Optional second list of IDs for sequence pairs.
- Returns:
- `List[int]`: List of zeros.
- """
- eos = [self.eos_token_id]
- if token_ids_1 is None:
- return len(token_ids_0 + eos) * [0]
- return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
- def get_sentinel_tokens(self):
- return list(
- set(filter(lambda x: bool(re.search(r"<extra_id_\d+>", x)) is not None, self.additional_special_tokens))
- )
- def get_sentinel_token_ids(self):
- return [self.convert_tokens_to_ids(token) for token in self.get_sentinel_tokens()]
|