| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226 |
- # coding=utf-8
- # Copyright 2020 Google Research and The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- TAPAS configuration. Based on the BERT configuration with added parameters.
- Hyperparameters are taken from run_task_main.py and hparam_utils.py of the original implementation. URLS:
- - https://github.com/google-research/tapas/blob/master/tapas/run_task_main.py
- - https://github.com/google-research/tapas/blob/master/tapas/utils/hparam_utils.py
- """
- from ...configuration_utils import PretrainedConfig
- class TapasConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`TapasModel`]. It is used to instantiate a TAPAS
- model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
- defaults will yield a similar configuration to that of the TAPAS
- [google/tapas-base-finetuned-sqa](https://huggingface.co/google/tapas-base-finetuned-sqa) architecture.
- Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Hyperparameters additional to BERT are taken from run_task_main.py and hparam_utils.py of the original
- implementation. Original implementation available at https://github.com/google-research/tapas/tree/master.
- Args:
- vocab_size (`int`, *optional*, defaults to 30522):
- Vocabulary size of the TAPAS model. Defines the number of different tokens that can be represented by the
- `inputs_ids` passed when calling [`TapasModel`].
- hidden_size (`int`, *optional*, defaults to 768):
- Dimensionality of the encoder layers and the pooler layer.
- num_hidden_layers (`int`, *optional*, defaults to 12):
- Number of hidden layers in the Transformer encoder.
- num_attention_heads (`int`, *optional*, defaults to 12):
- Number of attention heads for each attention layer in the Transformer encoder.
- intermediate_size (`int`, *optional*, defaults to 3072):
- Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
- hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
- `"relu"`, `"swish"` and `"gelu_new"` are supported.
- hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
- attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
- The dropout ratio for the attention probabilities.
- max_position_embeddings (`int`, *optional*, defaults to 1024):
- The maximum sequence length that this model might ever be used with. Typically set this to something large
- just in case (e.g., 512 or 1024 or 2048).
- type_vocab_sizes (`List[int]`, *optional*, defaults to `[3, 256, 256, 2, 256, 256, 10]`):
- The vocabulary sizes of the `token_type_ids` passed when calling [`TapasModel`].
- initializer_range (`float`, *optional*, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- layer_norm_eps (`float`, *optional*, defaults to 1e-12):
- The epsilon used by the layer normalization layers.
- positive_label_weight (`float`, *optional*, defaults to 10.0):
- Weight for positive labels.
- num_aggregation_labels (`int`, *optional*, defaults to 0):
- The number of aggregation operators to predict.
- aggregation_loss_weight (`float`, *optional*, defaults to 1.0):
- Importance weight for the aggregation loss.
- use_answer_as_supervision (`bool`, *optional*):
- Whether to use the answer as the only supervision for aggregation examples.
- answer_loss_importance (`float`, *optional*, defaults to 1.0):
- Importance weight for the regression loss.
- use_normalized_answer_loss (`bool`, *optional*, defaults to `False`):
- Whether to normalize the answer loss by the maximum of the predicted and expected value.
- huber_loss_delta (`float`, *optional*):
- Delta parameter used to calculate the regression loss.
- temperature (`float`, *optional*, defaults to 1.0):
- Value used to control (OR change) the skewness of cell logits probabilities.
- aggregation_temperature (`float`, *optional*, defaults to 1.0):
- Scales aggregation logits to control the skewness of probabilities.
- use_gumbel_for_cells (`bool`, *optional*, defaults to `False`):
- Whether to apply Gumbel-Softmax to cell selection.
- use_gumbel_for_aggregation (`bool`, *optional*, defaults to `False`):
- Whether to apply Gumbel-Softmax to aggregation selection.
- average_approximation_function (`string`, *optional*, defaults to `"ratio"`):
- Method to calculate the expected average of cells in the weak supervision case. One of `"ratio"`,
- `"first_order"` or `"second_order"`.
- cell_selection_preference (`float`, *optional*):
- Preference for cell selection in ambiguous cases. Only applicable in case of weak supervision for
- aggregation (WTQ, WikiSQL). If the total mass of the aggregation probabilities (excluding the "NONE"
- operator) is higher than this hyperparameter, then aggregation is predicted for an example.
- answer_loss_cutoff (`float`, *optional*):
- Ignore examples with answer loss larger than cutoff.
- max_num_rows (`int`, *optional*, defaults to 64):
- Maximum number of rows.
- max_num_columns (`int`, *optional*, defaults to 32):
- Maximum number of columns.
- average_logits_per_cell (`bool`, *optional*, defaults to `False`):
- Whether to average logits per cell.
- select_one_column (`bool`, *optional*, defaults to `True`):
- Whether to constrain the model to only select cells from a single column.
- allow_empty_column_selection (`bool`, *optional*, defaults to `False`):
- Whether to allow not to select any column.
- init_cell_selection_weights_to_zero (`bool`, *optional*, defaults to `False`):
- Whether to initialize cell selection weights to 0 so that the initial probabilities are 50%.
- reset_position_index_per_cell (`bool`, *optional*, defaults to `True`):
- Whether to restart position indexes at every cell (i.e. use relative position embeddings).
- disable_per_token_loss (`bool`, *optional*, defaults to `False`):
- Whether to disable any (strong or weak) supervision on cells.
- aggregation_labels (`Dict[int, label]`, *optional*):
- The aggregation labels used to aggregate the results. For example, the WTQ models have the following
- aggregation labels: `{0: "NONE", 1: "SUM", 2: "AVERAGE", 3: "COUNT"}`
- no_aggregation_label_index (`int`, *optional*):
- If the aggregation labels are defined and one of these labels represents "No aggregation", this should be
- set to its index. For example, the WTQ models have the "NONE" aggregation label at index 0, so that value
- should be set to 0 for these models.
- Example:
- ```python
- >>> from transformers import TapasModel, TapasConfig
- >>> # Initializing a default (SQA) Tapas configuration
- >>> configuration = TapasConfig()
- >>> # Initializing a model from the configuration
- >>> model = TapasModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "tapas"
- def __init__(
- self,
- vocab_size=30522,
- hidden_size=768,
- num_hidden_layers=12,
- num_attention_heads=12,
- intermediate_size=3072,
- hidden_act="gelu",
- hidden_dropout_prob=0.1,
- attention_probs_dropout_prob=0.1,
- max_position_embeddings=1024,
- type_vocab_sizes=[3, 256, 256, 2, 256, 256, 10],
- initializer_range=0.02,
- layer_norm_eps=1e-12,
- pad_token_id=0,
- positive_label_weight=10.0,
- num_aggregation_labels=0,
- aggregation_loss_weight=1.0,
- use_answer_as_supervision=None,
- answer_loss_importance=1.0,
- use_normalized_answer_loss=False,
- huber_loss_delta=None,
- temperature=1.0,
- aggregation_temperature=1.0,
- use_gumbel_for_cells=False,
- use_gumbel_for_aggregation=False,
- average_approximation_function="ratio",
- cell_selection_preference=None,
- answer_loss_cutoff=None,
- max_num_rows=64,
- max_num_columns=32,
- average_logits_per_cell=False,
- select_one_column=True,
- allow_empty_column_selection=False,
- init_cell_selection_weights_to_zero=False,
- reset_position_index_per_cell=True,
- disable_per_token_loss=False,
- aggregation_labels=None,
- no_aggregation_label_index=None,
- **kwargs,
- ):
- super().__init__(pad_token_id=pad_token_id, **kwargs)
- # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
- self.vocab_size = vocab_size
- self.hidden_size = hidden_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.hidden_act = hidden_act
- self.intermediate_size = intermediate_size
- self.hidden_dropout_prob = hidden_dropout_prob
- self.attention_probs_dropout_prob = attention_probs_dropout_prob
- self.max_position_embeddings = max_position_embeddings
- self.type_vocab_sizes = type_vocab_sizes
- self.initializer_range = initializer_range
- self.layer_norm_eps = layer_norm_eps
- # Fine-tuning task hyperparameters
- self.positive_label_weight = positive_label_weight
- self.num_aggregation_labels = num_aggregation_labels
- self.aggregation_loss_weight = aggregation_loss_weight
- self.use_answer_as_supervision = use_answer_as_supervision
- self.answer_loss_importance = answer_loss_importance
- self.use_normalized_answer_loss = use_normalized_answer_loss
- self.huber_loss_delta = huber_loss_delta
- self.temperature = temperature
- self.aggregation_temperature = aggregation_temperature
- self.use_gumbel_for_cells = use_gumbel_for_cells
- self.use_gumbel_for_aggregation = use_gumbel_for_aggregation
- self.average_approximation_function = average_approximation_function
- self.cell_selection_preference = cell_selection_preference
- self.answer_loss_cutoff = answer_loss_cutoff
- self.max_num_rows = max_num_rows
- self.max_num_columns = max_num_columns
- self.average_logits_per_cell = average_logits_per_cell
- self.select_one_column = select_one_column
- self.allow_empty_column_selection = allow_empty_column_selection
- self.init_cell_selection_weights_to_zero = init_cell_selection_weights_to_zero
- self.reset_position_index_per_cell = reset_position_index_per_cell
- self.disable_per_token_loss = disable_per_token_loss
- # Aggregation hyperparameters
- self.aggregation_labels = aggregation_labels
- self.no_aggregation_label_index = no_aggregation_label_index
- if isinstance(self.aggregation_labels, dict):
- self.aggregation_labels = {int(k): v for k, v in aggregation_labels.items()}
|