| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- # coding=utf-8
- # Copyright 2021 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Processor class for TrOCR.
- """
- import warnings
- from contextlib import contextmanager
- from ...processing_utils import ProcessorMixin
- class TrOCRProcessor(ProcessorMixin):
- r"""
- Constructs a TrOCR processor which wraps a vision image processor and a TrOCR tokenizer into a single processor.
- [`TrOCRProcessor`] offers all the functionalities of [`ViTImageProcessor`/`DeiTImageProcessor`] and
- [`RobertaTokenizer`/`XLMRobertaTokenizer`]. See the [`~TrOCRProcessor.__call__`] and [`~TrOCRProcessor.decode`] for
- more information.
- Args:
- image_processor ([`ViTImageProcessor`/`DeiTImageProcessor`], *optional*):
- An instance of [`ViTImageProcessor`/`DeiTImageProcessor`]. The image processor is a required input.
- tokenizer ([`RobertaTokenizer`/`XLMRobertaTokenizer`], *optional*):
- An instance of [`RobertaTokenizer`/`XLMRobertaTokenizer`]. The tokenizer is a required input.
- """
- attributes = ["image_processor", "tokenizer"]
- image_processor_class = "AutoImageProcessor"
- tokenizer_class = "AutoTokenizer"
- def __init__(self, image_processor=None, tokenizer=None, **kwargs):
- feature_extractor = None
- if "feature_extractor" in kwargs:
- warnings.warn(
- "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
- " instead.",
- FutureWarning,
- )
- feature_extractor = kwargs.pop("feature_extractor")
- image_processor = image_processor if image_processor is not None else feature_extractor
- if image_processor is None:
- raise ValueError("You need to specify an `image_processor`.")
- if tokenizer is None:
- raise ValueError("You need to specify a `tokenizer`.")
- super().__init__(image_processor, tokenizer)
- self.current_processor = self.image_processor
- self._in_target_context_manager = False
- def __call__(self, *args, **kwargs):
- """
- When used in normal mode, this method forwards all its arguments to AutoImageProcessor's
- [`~AutoImageProcessor.__call__`] and returns its output. If used in the context
- [`~TrOCRProcessor.as_target_processor`] this method forwards all its arguments to TrOCRTokenizer's
- [`~TrOCRTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more information.
- """
- # For backward compatibility
- if self._in_target_context_manager:
- return self.current_processor(*args, **kwargs)
- images = kwargs.pop("images", None)
- text = kwargs.pop("text", None)
- if len(args) > 0:
- images = args[0]
- args = args[1:]
- if images is None and text is None:
- raise ValueError("You need to specify either an `images` or `text` input to process.")
- if images is not None:
- inputs = self.image_processor(images, *args, **kwargs)
- if text is not None:
- encodings = self.tokenizer(text, **kwargs)
- if text is None:
- return inputs
- elif images is None:
- return encodings
- else:
- inputs["labels"] = encodings["input_ids"]
- return inputs
- def batch_decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer
- to the docstring of this method for more information.
- """
- return self.tokenizer.batch_decode(*args, **kwargs)
- def decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the
- docstring of this method for more information.
- """
- return self.tokenizer.decode(*args, **kwargs)
- @contextmanager
- def as_target_processor(self):
- """
- Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning TrOCR.
- """
- warnings.warn(
- "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
- "labels by using the argument `text` of the regular `__call__` method (either in the same call as "
- "your images inputs, or in a separate call."
- )
- self._in_target_context_manager = True
- self.current_processor = self.tokenizer
- yield
- self.current_processor = self.image_processor
- self._in_target_context_manager = False
- @property
- def feature_extractor_class(self):
- warnings.warn(
- "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
- FutureWarning,
- )
- return self.image_processor_class
- @property
- def feature_extractor(self):
- warnings.warn(
- "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
- FutureWarning,
- )
- return self.image_processor
|