| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135 |
- # coding=utf-8
- # Copyright 2022 Multimedia Computing Group, Nanjing University and The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch VideoMAE (masked autoencoder) model."""
- import collections.abc
- import math
- from copy import deepcopy
- from dataclasses import dataclass
- from typing import Optional, Set, Tuple, Union
- import numpy as np
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
- from ...activations import ACT2FN
- from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput
- from ...modeling_utils import PreTrainedModel
- from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
- from ...utils import (
- ModelOutput,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- logging,
- replace_return_docstrings,
- )
- from ...utils.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
- from .configuration_videomae import VideoMAEConfig
- logger = logging.get_logger(__name__)
- _CONFIG_FOR_DOC = "VideoMAEConfig"
- _CHECKPOINT_FOR_DOC = "MCG-NJU/videomae-base"
- @dataclass
- class VideoMAEDecoderOutput(ModelOutput):
- """
- Class for VideoMAEDecoder's outputs, with potential hidden states and attentions.
- Args:
- logits (`torch.FloatTensor` of shape `(batch_size, patch_size ** 2 * num_channels)`):
- Pixel reconstruction logits.
- hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
- shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
- plus the initial embedding outputs.
- attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
- the self-attention heads.
- """
- logits: torch.FloatTensor = None
- hidden_states: Optional[Tuple[torch.FloatTensor]] = None
- attentions: Optional[Tuple[torch.FloatTensor]] = None
- @dataclass
- class VideoMAEForPreTrainingOutput(ModelOutput):
- """
- Class for VideoMAEForPreTraining's outputs, with potential hidden states and attentions.
- Args:
- loss (`torch.FloatTensor` of shape `(1,)`):
- Pixel reconstruction loss.
- logits (`torch.FloatTensor` of shape `(batch_size, patch_size ** 2 * num_channels)`):
- Pixel reconstruction logits.
- hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
- Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
- shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
- plus the initial embedding outputs.
- attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
- Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
- sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
- the self-attention heads.
- """
- loss: Optional[torch.FloatTensor] = None
- logits: torch.FloatTensor = None
- hidden_states: Optional[Tuple[torch.FloatTensor]] = None
- attentions: Optional[Tuple[torch.FloatTensor]] = None
- # sin-cos position encoding
- # https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31
- def get_sinusoid_encoding_table(n_position, d_hid):
- """Sinusoid position encoding table"""
- # TODO: make it with torch instead of numpy
- def get_position_angle_vec(position):
- return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
- sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
- sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
- sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
- return torch.FloatTensor(sinusoid_table).unsqueeze(0)
- class VideoMAEEmbeddings(nn.Module):
- """
- Construct the patch and position embeddings.
- """
- def __init__(self, config):
- super().__init__()
- self.patch_embeddings = VideoMAEPatchEmbeddings(config)
- self.num_patches = self.patch_embeddings.num_patches
- # fixed sin-cos embedding
- self.position_embeddings = get_sinusoid_encoding_table(self.num_patches, config.hidden_size)
- self.config = config
- def forward(self, pixel_values, bool_masked_pos):
- # create patch embeddings
- embeddings = self.patch_embeddings(pixel_values)
- # add position embeddings
- embeddings = embeddings + self.position_embeddings.type_as(embeddings).to(embeddings.device).clone().detach()
- # only keep visible patches
- # ~bool_masked_pos means visible
- if bool_masked_pos is not None:
- batch_size, _, num_channels = embeddings.shape
- embeddings = embeddings[~bool_masked_pos]
- embeddings = embeddings.reshape(batch_size, -1, num_channels)
- return embeddings
- class VideoMAEPatchEmbeddings(nn.Module):
- """
- Video to Patch Embedding. This module turns a batch of videos of shape (batch_size, num_frames, num_channels,
- height, width) into a tensor of shape (batch_size, seq_len, hidden_size) to be consumed by a Transformer encoder.
- The seq_len (the number of patches) equals (number of frames // tubelet_size) * (height // patch_size) * (width //
- patch_size).
- """
- def __init__(self, config):
- super().__init__()
- image_size = config.image_size
- patch_size = config.patch_size
- num_channels = config.num_channels
- hidden_size = config.hidden_size
- num_frames = config.num_frames
- tubelet_size = config.tubelet_size
- image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
- patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
- self.image_size = image_size
- self.patch_size = patch_size
- self.tubelet_size = int(tubelet_size)
- num_patches = (
- (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) * (num_frames // self.tubelet_size)
- )
- self.num_channels = num_channels
- self.num_patches = num_patches
- self.projection = nn.Conv3d(
- in_channels=num_channels,
- out_channels=hidden_size,
- kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]),
- stride=(self.tubelet_size, patch_size[0], patch_size[1]),
- )
- def forward(self, pixel_values):
- batch_size, num_frames, num_channels, height, width = pixel_values.shape
- if num_channels != self.num_channels:
- raise ValueError(
- "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
- )
- if height != self.image_size[0] or width != self.image_size[1]:
- raise ValueError(
- f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
- )
- # permute to (batch_size, num_channels, num_frames, height, width)
- pixel_values = pixel_values.permute(0, 2, 1, 3, 4)
- embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
- return embeddings
- class VideoMAESelfAttention(nn.Module):
- def __init__(self, config: VideoMAEConfig) -> None:
- super().__init__()
- if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
- raise ValueError(
- f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
- f"heads {config.num_attention_heads}."
- )
- self.num_attention_heads = config.num_attention_heads
- self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
- self.all_head_size = self.num_attention_heads * self.attention_head_size
- self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
- self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
- self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
- if config.qkv_bias:
- self.q_bias = nn.Parameter(torch.zeros(self.all_head_size))
- self.v_bias = nn.Parameter(torch.zeros(self.all_head_size))
- else:
- self.q_bias = None
- self.v_bias = None
- self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
- def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
- new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
- x = x.view(new_x_shape)
- return x.permute(0, 2, 1, 3)
- def forward(
- self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
- ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
- k_bias = torch.zeros_like(self.v_bias, requires_grad=False) if self.q_bias is not None else None
- keys = nn.functional.linear(input=hidden_states, weight=self.key.weight, bias=k_bias)
- values = nn.functional.linear(input=hidden_states, weight=self.value.weight, bias=self.v_bias)
- queries = nn.functional.linear(input=hidden_states, weight=self.query.weight, bias=self.q_bias)
- key_layer = self.transpose_for_scores(keys)
- value_layer = self.transpose_for_scores(values)
- query_layer = self.transpose_for_scores(queries)
- # Take the dot product between "query" and "key" to get the raw attention scores.
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
- attention_scores = attention_scores / math.sqrt(self.attention_head_size)
- # Normalize the attention scores to probabilities.
- attention_probs = nn.functional.softmax(attention_scores, dim=-1)
- # This is actually dropping out entire tokens to attend to, which might
- # seem a bit unusual, but is taken from the original Transformer paper.
- attention_probs = self.dropout(attention_probs)
- # Mask heads if we want to
- if head_mask is not None:
- attention_probs = attention_probs * head_mask
- context_layer = torch.matmul(attention_probs, value_layer)
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
- new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
- context_layer = context_layer.view(new_context_layer_shape)
- outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
- return outputs
- class VideoMAESdpaSelfAttention(VideoMAESelfAttention):
- def __init__(self, config: VideoMAEConfig) -> None:
- super().__init__(config)
- self.attention_probs_dropout_prob = config.attention_probs_dropout_prob
- def forward(
- self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
- ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
- k_bias = torch.zeros_like(self.v_bias, requires_grad=False) if self.q_bias is not None else None
- keys = nn.functional.linear(input=hidden_states, weight=self.key.weight, bias=k_bias)
- values = nn.functional.linear(input=hidden_states, weight=self.value.weight, bias=self.v_bias)
- queries = nn.functional.linear(input=hidden_states, weight=self.query.weight, bias=self.q_bias)
- key_layer = self.transpose_for_scores(keys)
- value_layer = self.transpose_for_scores(values)
- query_layer = self.transpose_for_scores(queries)
- context_layer = torch.nn.functional.scaled_dot_product_attention(
- query_layer,
- key_layer,
- value_layer,
- head_mask,
- self.attention_probs_dropout_prob if self.training else 0.0,
- is_causal=False,
- scale=None,
- )
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
- new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
- context_layer = context_layer.view(new_context_layer_shape)
- return context_layer, None
- # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->VideoMAE
- class VideoMAESelfOutput(nn.Module):
- """
- The residual connection is defined in VideoMAELayer instead of here (as is the case with other models), due to the
- layernorm applied before each block.
- """
- def __init__(self, config: VideoMAEConfig) -> None:
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- return hidden_states
- # Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->VideoMAE
- class VideoMAEAttention(nn.Module):
- def __init__(self, config: VideoMAEConfig) -> None:
- super().__init__()
- self.attention = VideoMAESelfAttention(config)
- self.output = VideoMAESelfOutput(config)
- self.pruned_heads = set()
- def prune_heads(self, heads: Set[int]) -> None:
- if len(heads) == 0:
- return
- heads, index = find_pruneable_heads_and_indices(
- heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
- )
- # Prune linear layers
- self.attention.query = prune_linear_layer(self.attention.query, index)
- self.attention.key = prune_linear_layer(self.attention.key, index)
- self.attention.value = prune_linear_layer(self.attention.value, index)
- self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
- # Update hyper params and store pruned heads
- self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
- self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
- self.pruned_heads = self.pruned_heads.union(heads)
- def forward(
- self,
- hidden_states: torch.Tensor,
- head_mask: Optional[torch.Tensor] = None,
- output_attentions: bool = False,
- ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
- self_outputs = self.attention(hidden_states, head_mask, output_attentions)
- attention_output = self.output(self_outputs[0], hidden_states)
- outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
- return outputs
- # Copied from transformers.models.vit.modeling_vit.ViTSdpaAttention with ViT->VideoMAE
- class VideoMAESdpaAttention(VideoMAEAttention):
- def __init__(self, config: VideoMAEConfig) -> None:
- super().__init__(config)
- self.attention = VideoMAESdpaSelfAttention(config)
- # Copied from transformers.models.vit.modeling_vit.ViTIntermediate ViT->VideoMAE
- class VideoMAEIntermediate(nn.Module):
- def __init__(self, config: VideoMAEConfig) -> None:
- super().__init__()
- self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
- if isinstance(config.hidden_act, str):
- self.intermediate_act_fn = ACT2FN[config.hidden_act]
- else:
- self.intermediate_act_fn = config.hidden_act
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.intermediate_act_fn(hidden_states)
- return hidden_states
- # Copied from transformers.models.vit.modeling_vit.ViTOutput ViT->VideoMAE
- class VideoMAEOutput(nn.Module):
- def __init__(self, config: VideoMAEConfig) -> None:
- super().__init__()
- self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = hidden_states + input_tensor
- return hidden_states
- VIDEOMAE_ATTENTION_CLASSES = {"eager": VideoMAEAttention, "sdpa": VideoMAESdpaAttention}
- # Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->VideoMAE,VIT->VIDEOMAE
- class VideoMAELayer(nn.Module):
- """This corresponds to the Block class in the timm implementation."""
- def __init__(self, config: VideoMAEConfig) -> None:
- super().__init__()
- self.chunk_size_feed_forward = config.chunk_size_feed_forward
- self.seq_len_dim = 1
- self.attention = VIDEOMAE_ATTENTION_CLASSES[config._attn_implementation](config)
- self.intermediate = VideoMAEIntermediate(config)
- self.output = VideoMAEOutput(config)
- self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- def forward(
- self,
- hidden_states: torch.Tensor,
- head_mask: Optional[torch.Tensor] = None,
- output_attentions: bool = False,
- ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
- self_attention_outputs = self.attention(
- self.layernorm_before(hidden_states), # in VideoMAE, layernorm is applied before self-attention
- head_mask,
- output_attentions=output_attentions,
- )
- attention_output = self_attention_outputs[0]
- outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
- # first residual connection
- hidden_states = attention_output + hidden_states
- # in VideoMAE, layernorm is also applied after self-attention
- layer_output = self.layernorm_after(hidden_states)
- layer_output = self.intermediate(layer_output)
- # second residual connection is done here
- layer_output = self.output(layer_output, hidden_states)
- outputs = (layer_output,) + outputs
- return outputs
- # Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->VideoMAE
- class VideoMAEEncoder(nn.Module):
- def __init__(self, config: VideoMAEConfig) -> None:
- super().__init__()
- self.config = config
- self.layer = nn.ModuleList([VideoMAELayer(config) for _ in range(config.num_hidden_layers)])
- self.gradient_checkpointing = False
- def forward(
- self,
- hidden_states: torch.Tensor,
- head_mask: Optional[torch.Tensor] = None,
- output_attentions: bool = False,
- output_hidden_states: bool = False,
- return_dict: bool = True,
- ) -> Union[tuple, BaseModelOutput]:
- all_hidden_states = () if output_hidden_states else None
- all_self_attentions = () if output_attentions else None
- for i, layer_module in enumerate(self.layer):
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- layer_head_mask = head_mask[i] if head_mask is not None else None
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- layer_module.__call__,
- hidden_states,
- layer_head_mask,
- output_attentions,
- )
- else:
- layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
- hidden_states = layer_outputs[0]
- if output_attentions:
- all_self_attentions = all_self_attentions + (layer_outputs[1],)
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
- return BaseModelOutput(
- last_hidden_state=hidden_states,
- hidden_states=all_hidden_states,
- attentions=all_self_attentions,
- )
- class VideoMAEPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = VideoMAEConfig
- base_model_prefix = "videomae"
- main_input_name = "pixel_values"
- supports_gradient_checkpointing = True
- _supports_sdpa = True
- def _init_weights(self, module):
- """Initialize the weights"""
- if isinstance(module, (nn.Linear, nn.Conv3d)):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.LayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- VIDEOMAE_START_DOCSTRING = r"""
- This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
- as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
- behavior.
- Parameters:
- config ([`VideoMAEConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- VIDEOMAE_INPUTS_DOCSTRING = r"""
- Args:
- pixel_values (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
- Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
- [`VideoMAEImageProcessor.__call__`] for details.
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- @add_start_docstrings(
- "The bare VideoMAE Model transformer outputting raw hidden-states without any specific head on top.",
- VIDEOMAE_START_DOCSTRING,
- )
- class VideoMAEModel(VideoMAEPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.config = config
- self.embeddings = VideoMAEEmbeddings(config)
- self.encoder = VideoMAEEncoder(config)
- if config.use_mean_pooling:
- self.layernorm = None
- else:
- self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self):
- return self.embeddings.patch_embeddings
- def _prune_heads(self, heads_to_prune):
- """
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
- class PreTrainedModel
- """
- for layer, heads in heads_to_prune.items():
- self.encoder.layer[layer].attention.prune_heads(heads)
- @add_start_docstrings_to_model_forward(VIDEOMAE_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- pixel_values: torch.FloatTensor,
- bool_masked_pos: Optional[torch.BoolTensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, BaseModelOutput]:
- r"""
- bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Each video in the
- batch must have the same number of masked patches. If `None`, then all patches are considered. Sequence
- length is `(num_frames // tubelet_size) * (image_size // patch_size) ** 2`.
- Returns:
- Examples:
- ```python
- >>> import av
- >>> import numpy as np
- >>> from transformers import AutoImageProcessor, VideoMAEModel
- >>> from huggingface_hub import hf_hub_download
- >>> np.random.seed(0)
- >>> def read_video_pyav(container, indices):
- ... '''
- ... Decode the video with PyAV decoder.
- ... Args:
- ... container (`av.container.input.InputContainer`): PyAV container.
- ... indices (`List[int]`): List of frame indices to decode.
- ... Returns:
- ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
- ... '''
- ... frames = []
- ... container.seek(0)
- ... start_index = indices[0]
- ... end_index = indices[-1]
- ... for i, frame in enumerate(container.decode(video=0)):
- ... if i > end_index:
- ... break
- ... if i >= start_index and i in indices:
- ... frames.append(frame)
- ... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
- >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
- ... '''
- ... Sample a given number of frame indices from the video.
- ... Args:
- ... clip_len (`int`): Total number of frames to sample.
- ... frame_sample_rate (`int`): Sample every n-th frame.
- ... seg_len (`int`): Maximum allowed index of sample's last frame.
- ... Returns:
- ... indices (`List[int]`): List of sampled frame indices
- ... '''
- ... converted_len = int(clip_len * frame_sample_rate)
- ... end_idx = np.random.randint(converted_len, seg_len)
- ... start_idx = end_idx - converted_len
- ... indices = np.linspace(start_idx, end_idx, num=clip_len)
- ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
- ... return indices
- >>> # video clip consists of 300 frames (10 seconds at 30 FPS)
- >>> file_path = hf_hub_download(
- ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
- ... )
- >>> container = av.open(file_path)
- >>> # sample 16 frames
- >>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
- >>> video = read_video_pyav(container, indices)
- >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base")
- >>> model = VideoMAEModel.from_pretrained("MCG-NJU/videomae-base")
- >>> # prepare video for the model
- >>> inputs = image_processor(list(video), return_tensors="pt")
- >>> # forward pass
- >>> outputs = model(**inputs)
- >>> last_hidden_states = outputs.last_hidden_state
- >>> list(last_hidden_states.shape)
- [1, 1568, 768]
- ```"""
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- # Prepare head mask if needed
- # 1.0 in head_mask indicate we keep the head
- # attention_probs has shape bsz x n_heads x N x N
- # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
- # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
- head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
- embedding_output = self.embeddings(pixel_values, bool_masked_pos)
- encoder_outputs = self.encoder(
- embedding_output,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = encoder_outputs[0]
- if self.layernorm is not None:
- sequence_output = self.layernorm(sequence_output)
- if not return_dict:
- return (sequence_output,) + encoder_outputs[1:]
- return BaseModelOutput(
- last_hidden_state=sequence_output,
- hidden_states=encoder_outputs.hidden_states,
- attentions=encoder_outputs.attentions,
- )
- class VideoMAEDecoder(nn.Module):
- def __init__(self, config, num_patches):
- super().__init__()
- decoder_num_labels = config.num_channels * config.tubelet_size * config.patch_size**2
- decoder_config = deepcopy(config)
- decoder_config.hidden_size = config.decoder_hidden_size
- decoder_config.num_hidden_layers = config.decoder_num_hidden_layers
- decoder_config.num_attention_heads = config.decoder_num_attention_heads
- decoder_config.intermediate_size = config.decoder_intermediate_size
- self.decoder_layers = nn.ModuleList(
- [VideoMAELayer(decoder_config) for _ in range(config.decoder_num_hidden_layers)]
- )
- self.norm = nn.LayerNorm(config.decoder_hidden_size)
- self.head = (
- nn.Linear(config.decoder_hidden_size, decoder_num_labels) if decoder_num_labels > 0 else nn.Identity()
- )
- self.gradient_checkpointing = False
- self.config = config
- def forward(
- self,
- hidden_states,
- return_token_num,
- output_attentions=False,
- output_hidden_states=False,
- return_dict=True,
- ):
- # apply Transformer layers (blocks)
- all_hidden_states = () if output_hidden_states else None
- all_self_attentions = () if output_attentions else None
- for i, layer_module in enumerate(self.decoder_layers):
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if self.gradient_checkpointing and self.training:
- layer_outputs = self._gradient_checkpointing_func(
- layer_module.__call__,
- hidden_states,
- None,
- output_attentions,
- )
- else:
- layer_outputs = layer_module(hidden_states, head_mask=None, output_attentions=output_attentions)
- hidden_states = layer_outputs[0]
- if output_attentions:
- all_self_attentions = all_self_attentions + (layer_outputs[1],)
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if return_token_num > 0:
- hidden_states = hidden_states[:, -return_token_num:]
- # predictor projection
- hidden_states = self.norm(hidden_states)
- logits = self.head(hidden_states)
- if not return_dict:
- return tuple(v for v in [logits, all_hidden_states, all_self_attentions] if v is not None)
- return VideoMAEDecoderOutput(logits=logits, hidden_states=all_hidden_states, attentions=all_self_attentions)
- @add_start_docstrings(
- "The VideoMAE Model transformer with the decoder on top for self-supervised pre-training.",
- VIDEOMAE_START_DOCSTRING,
- )
- class VideoMAEForPreTraining(VideoMAEPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.config = config
- self.videomae = VideoMAEModel(config)
- self.encoder_to_decoder = nn.Linear(config.hidden_size, config.decoder_hidden_size, bias=False)
- self.mask_token = nn.Parameter(torch.zeros(1, 1, config.decoder_hidden_size))
- self.position_embeddings = get_sinusoid_encoding_table(
- self.videomae.embeddings.num_patches, config.decoder_hidden_size
- )
- self.decoder = VideoMAEDecoder(config, num_patches=self.videomae.embeddings.num_patches)
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(VIDEOMAE_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=VideoMAEForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- pixel_values: torch.FloatTensor,
- bool_masked_pos: torch.BoolTensor,
- head_mask: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[tuple, VideoMAEForPreTrainingOutput]:
- r"""
- bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`):
- Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Each video in the
- batch must have the same number of masked patches. Sequence length is `(num_frames // tubelet_size) *
- (image_size // patch_size) ** 2`.
- Returns:
- Examples:
- ```python
- >>> from transformers import AutoImageProcessor, VideoMAEForPreTraining
- >>> import numpy as np
- >>> import torch
- >>> num_frames = 16
- >>> video = list(np.random.randint(0, 256, (num_frames, 3, 224, 224)))
- >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base")
- >>> model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base")
- >>> pixel_values = image_processor(video, return_tensors="pt").pixel_values
- >>> num_patches_per_frame = (model.config.image_size // model.config.patch_size) ** 2
- >>> seq_length = (num_frames // model.config.tubelet_size) * num_patches_per_frame
- >>> bool_masked_pos = torch.randint(0, 2, (1, seq_length)).bool()
- >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
- >>> loss = outputs.loss
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.videomae(
- pixel_values,
- bool_masked_pos=bool_masked_pos,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- sequence_output = self.encoder_to_decoder(
- sequence_output
- ) # [batch_size, num_visible_patches, decoder_hidden_size]
- batch_size, seq_len, num_channels = sequence_output.shape
- # we don't unshuffle the correct visible token order, but shuffle the position embeddings accordingly.
- if bool_masked_pos is None:
- raise ValueError("One must provided a boolean mask ")
- expanded_position_embeddings = self.position_embeddings.expand(batch_size, -1, -1).type_as(pixel_values)
- expanded_position_embeddings = expanded_position_embeddings.to(pixel_values.device).clone().detach()
- pos_emb_visible = expanded_position_embeddings[~bool_masked_pos].reshape(batch_size, -1, num_channels)
- pos_emb_mask = expanded_position_embeddings[bool_masked_pos].reshape(batch_size, -1, num_channels)
- # [batch_size, num_patches, decoder_hidden_size]
- x_full = torch.cat([sequence_output + pos_emb_visible, self.mask_token + pos_emb_mask], dim=1)
- # [batch_size, num_masked_patches, num_channels * patch_size * patch_size]
- decoder_outputs = self.decoder(x_full, pos_emb_mask.shape[1])
- logits = decoder_outputs.logits
- loss = None
- with torch.no_grad():
- # calculate the labels to be predicted
- if self.config.num_channels != 3:
- # Can't unnormalize with default means/stds
- frames = pixel_values
- else:
- # first, unnormalize the frames
- device = pixel_values.device
- dtype = pixel_values.dtype
- mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device=device, dtype=dtype)[None, None, :, None, None]
- std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device=device, dtype=dtype)[None, None, :, None, None]
- frames = pixel_values * std + mean # in [0, 1]
- batch_size, time, num_channels, height, width = frames.shape
- tubelet_size, patch_size = self.config.tubelet_size, self.config.patch_size
- if self.config.norm_pix_loss:
- # step 1: split up dimensions (time by tubelet_size, height by patch_size, width by patch_size)
- frames = frames.view(
- batch_size,
- time // tubelet_size,
- tubelet_size,
- num_channels,
- height // patch_size,
- patch_size,
- width // patch_size,
- patch_size,
- )
- # step 2: move dimensions to concatenate:
- frames = frames.permute(0, 1, 4, 6, 2, 5, 7, 3).contiguous()
- # step 3: concatenate:
- frames = frames.view(
- batch_size,
- time // tubelet_size * height // patch_size * width // patch_size,
- tubelet_size * patch_size * patch_size,
- num_channels,
- )
- # step 4: normalize. The authors find that the mean is about 0.48 and standard deviation is about 0.08.
- frames_norm = (frames - frames.mean(dim=-2, keepdim=True)) / (
- frames.var(dim=-2, unbiased=True, keepdim=True).sqrt() + 1e-6
- )
- # step 5: reshape to (batch_size, T//ts * H//ps * W//ps, ts * ps * ps * C)
- videos_patch = frames_norm.view(
- batch_size,
- time // tubelet_size * height // patch_size * width // patch_size,
- tubelet_size * patch_size * patch_size * num_channels,
- )
- else:
- if self.config.num_channels != 3:
- raise ValueError(
- "Can't unnormalize non-RGB images. Consider setting config.norm_pix_loss to False."
- )
- # step 1: split up dimensions (time by tubelet_size, height by patch_size, width by patch_size)
- frames = frames.view(
- batch_size,
- time // tubelet_size,
- tubelet_size,
- num_channels,
- height // patch_size,
- patch_size,
- width // patch_size,
- patch_size,
- )
- # step 2: move dimensions to concatenate: (batch_size, T//ts, H//ps, W//ps, ts, ps, ps, C)
- frames = frames.permute(0, 1, 4, 6, 2, 5, 7, 3).contiguous()
- # step 3: concatenate
- videos_patch = frames.view(
- batch_size,
- time // tubelet_size * height // patch_size * width // patch_size,
- tubelet_size * patch_size * patch_size * num_channels,
- )
- batch_size, _, num_channels = videos_patch.shape
- labels = videos_patch[bool_masked_pos].reshape(batch_size, -1, num_channels)
- loss_fct = MSELoss()
- loss = loss_fct(logits, labels)
- if not return_dict:
- output = (logits,) + outputs[1:]
- return ((loss,) + output) if loss is not None else output
- return VideoMAEForPreTrainingOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- @add_start_docstrings(
- """VideoMAE Model transformer with a video classification head on top (a linear layer on top of the average pooled hidden
- states of all tokens) e.g. for ImageNet.""",
- VIDEOMAE_START_DOCSTRING,
- )
- class VideoMAEForVideoClassification(VideoMAEPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.videomae = VideoMAEModel(config)
- # Classifier head
- self.fc_norm = nn.LayerNorm(config.hidden_size) if config.use_mean_pooling else None
- self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
- # Initialize weights and apply final processing
- self.post_init()
- @add_start_docstrings_to_model_forward(VIDEOMAE_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- pixel_values: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, ImageClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- Returns:
- Examples:
- ```python
- >>> import av
- >>> import torch
- >>> import numpy as np
- >>> from transformers import AutoImageProcessor, VideoMAEForVideoClassification
- >>> from huggingface_hub import hf_hub_download
- >>> np.random.seed(0)
- >>> def read_video_pyav(container, indices):
- ... '''
- ... Decode the video with PyAV decoder.
- ... Args:
- ... container (`av.container.input.InputContainer`): PyAV container.
- ... indices (`List[int]`): List of frame indices to decode.
- ... Returns:
- ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
- ... '''
- ... frames = []
- ... container.seek(0)
- ... start_index = indices[0]
- ... end_index = indices[-1]
- ... for i, frame in enumerate(container.decode(video=0)):
- ... if i > end_index:
- ... break
- ... if i >= start_index and i in indices:
- ... frames.append(frame)
- ... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
- >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
- ... '''
- ... Sample a given number of frame indices from the video.
- ... Args:
- ... clip_len (`int`): Total number of frames to sample.
- ... frame_sample_rate (`int`): Sample every n-th frame.
- ... seg_len (`int`): Maximum allowed index of sample's last frame.
- ... Returns:
- ... indices (`List[int]`): List of sampled frame indices
- ... '''
- ... converted_len = int(clip_len * frame_sample_rate)
- ... end_idx = np.random.randint(converted_len, seg_len)
- ... start_idx = end_idx - converted_len
- ... indices = np.linspace(start_idx, end_idx, num=clip_len)
- ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
- ... return indices
- >>> # video clip consists of 300 frames (10 seconds at 30 FPS)
- >>> file_path = hf_hub_download(
- ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
- ... )
- >>> container = av.open(file_path)
- >>> # sample 16 frames
- >>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
- >>> video = read_video_pyav(container, indices)
- >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
- >>> model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
- >>> inputs = image_processor(list(video), return_tensors="pt")
- >>> with torch.no_grad():
- ... outputs = model(**inputs)
- ... logits = outputs.logits
- >>> # model predicts one of the 400 Kinetics-400 classes
- >>> predicted_label = logits.argmax(-1).item()
- >>> print(model.config.id2label[predicted_label])
- eating spaghetti
- ```"""
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.videomae(
- pixel_values,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- sequence_output = outputs[0]
- if self.fc_norm is not None:
- sequence_output = self.fc_norm(sequence_output.mean(1))
- else:
- sequence_output = sequence_output[:, 0]
- logits = self.classifier(sequence_output)
- loss = None
- if labels is not None:
- if self.config.problem_type is None:
- if self.num_labels == 1:
- self.config.problem_type = "regression"
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
- self.config.problem_type = "single_label_classification"
- else:
- self.config.problem_type = "multi_label_classification"
- if self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.num_labels == 1:
- loss = loss_fct(logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(logits, labels)
- if not return_dict:
- output = (logits,) + outputs[1:]
- return ((loss,) + output) if loss is not None else output
- return ImageClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
|