| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904 |
- # coding=utf-8
- # Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """TF 2.0 ViT model."""
- from __future__ import annotations
- import collections.abc
- import math
- from typing import Optional, Tuple, Union
- import numpy as np
- import tensorflow as tf
- from ...activations_tf import get_tf_activation
- from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling, TFSequenceClassifierOutput
- from ...modeling_tf_utils import (
- TFModelInputType,
- TFPreTrainedModel,
- TFSequenceClassificationLoss,
- get_initializer,
- keras,
- keras_serializable,
- unpack_inputs,
- )
- from ...tf_utils import shape_list, stable_softmax
- from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
- from .configuration_vit import ViTConfig
- logger = logging.get_logger(__name__)
- # General docstring
- _CONFIG_FOR_DOC = "ViTConfig"
- # Base docstring
- _CHECKPOINT_FOR_DOC = "google/vit-base-patch16-224-in21k"
- _EXPECTED_OUTPUT_SHAPE = [1, 197, 768]
- # Image classification docstring
- _IMAGE_CLASS_CHECKPOINT = "google/vit-base-patch16-224"
- _IMAGE_CLASS_EXPECTED_OUTPUT = "Egyptian cat"
- class TFViTEmbeddings(keras.layers.Layer):
- """
- Construct the CLS token, position and patch embeddings.
- """
- def __init__(self, config: ViTConfig, **kwargs):
- super().__init__(**kwargs)
- self.patch_embeddings = TFViTPatchEmbeddings(config, name="patch_embeddings")
- self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
- self.config = config
- def build(self, input_shape=None):
- num_patches = self.patch_embeddings.num_patches
- self.cls_token = self.add_weight(
- shape=(1, 1, self.config.hidden_size),
- initializer=get_initializer(self.config.initializer_range),
- trainable=True,
- name="cls_token",
- )
- self.position_embeddings = self.add_weight(
- shape=(1, num_patches + 1, self.config.hidden_size),
- initializer=get_initializer(self.config.initializer_range),
- trainable=True,
- name="position_embeddings",
- )
- if self.built:
- return
- self.built = True
- if getattr(self, "patch_embeddings", None) is not None:
- with tf.name_scope(self.patch_embeddings.name):
- self.patch_embeddings.build(None)
- def interpolate_pos_encoding(self, embeddings, height, width) -> tf.Tensor:
- """
- This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
- resolution images.
- Source:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
- """
- batch_size, seq_len, dim = shape_list(embeddings)
- num_patches = seq_len - 1
- _, num_positions, _ = shape_list(self.position_embeddings)
- num_positions -= 1
- if num_patches == num_positions and height == width:
- return self.position_embeddings
- class_pos_embed = self.position_embeddings[:, :1]
- patch_pos_embed = self.position_embeddings[:, 1:]
- h0 = height // self.config.patch_size
- w0 = width // self.config.patch_size
- patch_pos_embed = tf.image.resize(
- images=tf.reshape(
- patch_pos_embed, shape=(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
- ),
- size=(h0, w0),
- method="bicubic",
- )
- shape = shape_list(patch_pos_embed)
- assert h0 == shape[-3] and w0 == shape[-2]
- patch_pos_embed = tf.reshape(tensor=patch_pos_embed, shape=(1, -1, dim))
- return tf.concat(values=(class_pos_embed, patch_pos_embed), axis=1)
- def call(
- self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False
- ) -> tf.Tensor:
- batch_size, num_channels, height, width = shape_list(pixel_values)
- embeddings = self.patch_embeddings(
- pixel_values, interpolate_pos_encoding=interpolate_pos_encoding, training=training
- )
- # add the [CLS] token to the embedded patch tokens
- cls_tokens = tf.repeat(self.cls_token, repeats=batch_size, axis=0)
- embeddings = tf.concat((cls_tokens, embeddings), axis=1)
- # add positional encoding to each token
- if interpolate_pos_encoding:
- embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
- else:
- embeddings = embeddings + self.position_embeddings
- embeddings = self.dropout(embeddings, training=training)
- return embeddings
- # Based on timm implementation, which can be found here:
- # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
- class TFViTPatchEmbeddings(keras.layers.Layer):
- """
- This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
- `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
- Transformer.
- """
- def __init__(self, config: ViTConfig, **kwargs):
- super().__init__(**kwargs)
- image_size, patch_size = config.image_size, config.patch_size
- num_channels, hidden_size = config.num_channels, config.hidden_size
- image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
- patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
- num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
- self.image_size = image_size
- self.patch_size = patch_size
- self.num_patches = num_patches
- self.num_channels = num_channels
- self.config = config
- self.projection = keras.layers.Conv2D(
- filters=hidden_size,
- kernel_size=patch_size,
- strides=patch_size,
- padding="valid",
- data_format="channels_last",
- use_bias=True,
- kernel_initializer=get_initializer(self.config.initializer_range),
- bias_initializer="zeros",
- name="projection",
- )
- def call(
- self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False, training: bool = False
- ) -> tf.Tensor:
- batch_size, num_channels, height, width = shape_list(pixel_values)
- if tf.executing_eagerly() and num_channels != self.num_channels:
- raise ValueError(
- "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
- )
- if not interpolate_pos_encoding:
- if tf.executing_eagerly():
- if height != self.image_size[0] or width != self.image_size[1]:
- raise ValueError(
- f"Input image size ({height}*{width}) doesn't match model"
- f" ({self.image_size[0]}*{self.image_size[1]})."
- )
- # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format.
- # So change the input format from `NCHW` to `NHWC`.
- # shape = (batch_size, in_height, in_width, in_channels=num_channels)
- pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
- projection = self.projection(pixel_values)
- # Change the 2D spatial dimensions to a single temporal dimension.
- # shape = (batch_size, num_patches, out_channels=embed_dim)
- num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0])
- embeddings = tf.reshape(tensor=projection, shape=(batch_size, num_patches, -1))
- return embeddings
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "projection", None) is not None:
- with tf.name_scope(self.projection.name):
- self.projection.build([None, None, None, self.num_channels])
- class TFViTSelfAttention(keras.layers.Layer):
- def __init__(self, config: ViTConfig, **kwargs):
- super().__init__(**kwargs)
- if config.hidden_size % config.num_attention_heads != 0:
- raise ValueError(
- f"The hidden size ({config.hidden_size}) is not a multiple of the number "
- f"of attention heads ({config.num_attention_heads})"
- )
- self.num_attention_heads = config.num_attention_heads
- self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
- self.all_head_size = self.num_attention_heads * self.attention_head_size
- self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
- self.query = keras.layers.Dense(
- units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
- )
- self.key = keras.layers.Dense(
- units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
- )
- self.value = keras.layers.Dense(
- units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
- )
- self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
- self.config = config
- def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
- # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
- tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
- # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
- return tf.transpose(tensor, perm=[0, 2, 1, 3])
- def call(
- self,
- hidden_states: tf.Tensor,
- head_mask: tf.Tensor,
- output_attentions: bool,
- training: bool = False,
- ) -> Tuple[tf.Tensor]:
- batch_size = shape_list(hidden_states)[0]
- mixed_query_layer = self.query(inputs=hidden_states)
- mixed_key_layer = self.key(inputs=hidden_states)
- mixed_value_layer = self.value(inputs=hidden_states)
- query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
- key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
- value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
- # Take the dot product between "query" and "key" to get the raw attention scores.
- # (batch size, num_heads, seq_len_q, seq_len_k)
- attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
- dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
- attention_scores = tf.divide(attention_scores, dk)
- # Normalize the attention scores to probabilities.
- attention_probs = stable_softmax(logits=attention_scores, axis=-1)
- # This is actually dropping out entire tokens to attend to, which might
- # seem a bit unusual, but is taken from the original Transformer paper.
- attention_probs = self.dropout(inputs=attention_probs, training=training)
- # Mask heads if we want to
- if head_mask is not None:
- attention_probs = tf.multiply(attention_probs, head_mask)
- attention_output = tf.matmul(attention_probs, value_layer)
- attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
- # (batch_size, seq_len_q, all_head_size)
- attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
- outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
- return outputs
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "query", None) is not None:
- with tf.name_scope(self.query.name):
- self.query.build([None, None, self.config.hidden_size])
- if getattr(self, "key", None) is not None:
- with tf.name_scope(self.key.name):
- self.key.build([None, None, self.config.hidden_size])
- if getattr(self, "value", None) is not None:
- with tf.name_scope(self.value.name):
- self.value.build([None, None, self.config.hidden_size])
- class TFViTSelfOutput(keras.layers.Layer):
- """
- The residual connection is defined in TFViTLayer instead of here (as is the case with other models), due to the
- layernorm applied before each block.
- """
- def __init__(self, config: ViTConfig, **kwargs):
- super().__init__(**kwargs)
- self.dense = keras.layers.Dense(
- units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
- )
- self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
- self.config = config
- def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
- hidden_states = self.dense(inputs=hidden_states)
- hidden_states = self.dropout(inputs=hidden_states, training=training)
- return hidden_states
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "dense", None) is not None:
- with tf.name_scope(self.dense.name):
- self.dense.build([None, None, self.config.hidden_size])
- class TFViTAttention(keras.layers.Layer):
- def __init__(self, config: ViTConfig, **kwargs):
- super().__init__(**kwargs)
- self.self_attention = TFViTSelfAttention(config, name="attention")
- self.dense_output = TFViTSelfOutput(config, name="output")
- def prune_heads(self, heads):
- raise NotImplementedError
- def call(
- self,
- input_tensor: tf.Tensor,
- head_mask: tf.Tensor,
- output_attentions: bool,
- training: bool = False,
- ) -> Tuple[tf.Tensor]:
- self_outputs = self.self_attention(
- hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, training=training
- )
- attention_output = self.dense_output(
- hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
- )
- outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
- return outputs
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "self_attention", None) is not None:
- with tf.name_scope(self.self_attention.name):
- self.self_attention.build(None)
- if getattr(self, "dense_output", None) is not None:
- with tf.name_scope(self.dense_output.name):
- self.dense_output.build(None)
- class TFViTIntermediate(keras.layers.Layer):
- def __init__(self, config: ViTConfig, **kwargs):
- super().__init__(**kwargs)
- self.dense = keras.layers.Dense(
- units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
- )
- if isinstance(config.hidden_act, str):
- self.intermediate_act_fn = get_tf_activation(config.hidden_act)
- else:
- self.intermediate_act_fn = config.hidden_act
- self.config = config
- def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
- hidden_states = self.dense(inputs=hidden_states)
- hidden_states = self.intermediate_act_fn(hidden_states)
- return hidden_states
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "dense", None) is not None:
- with tf.name_scope(self.dense.name):
- self.dense.build([None, None, self.config.hidden_size])
- class TFViTOutput(keras.layers.Layer):
- def __init__(self, config: ViTConfig, **kwargs):
- super().__init__(**kwargs)
- self.dense = keras.layers.Dense(
- units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
- )
- self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
- self.config = config
- def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
- hidden_states = self.dense(inputs=hidden_states)
- hidden_states = self.dropout(inputs=hidden_states, training=training)
- hidden_states = hidden_states + input_tensor
- return hidden_states
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "dense", None) is not None:
- with tf.name_scope(self.dense.name):
- self.dense.build([None, None, self.config.intermediate_size])
- class TFViTLayer(keras.layers.Layer):
- """This corresponds to the Block class in the timm implementation."""
- def __init__(self, config: ViTConfig, **kwargs):
- super().__init__(**kwargs)
- self.attention = TFViTAttention(config, name="attention")
- self.intermediate = TFViTIntermediate(config, name="intermediate")
- self.vit_output = TFViTOutput(config, name="output")
- self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before")
- self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after")
- self.config = config
- def call(
- self,
- hidden_states: tf.Tensor,
- head_mask: tf.Tensor,
- output_attentions: bool,
- training: bool = False,
- ) -> Tuple[tf.Tensor]:
- attention_outputs = self.attention(
- # in ViT, layernorm is applied before self-attention
- input_tensor=self.layernorm_before(inputs=hidden_states),
- head_mask=head_mask,
- output_attentions=output_attentions,
- training=training,
- )
- attention_output = attention_outputs[0]
- # first residual connection
- hidden_states = attention_output + hidden_states
- # in ViT, layernorm is also applied after self-attention
- layer_output = self.layernorm_after(inputs=hidden_states)
- intermediate_output = self.intermediate(hidden_states=layer_output)
- # second residual connection is done here
- layer_output = self.vit_output(
- hidden_states=intermediate_output, input_tensor=hidden_states, training=training
- )
- outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
- return outputs
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "attention", None) is not None:
- with tf.name_scope(self.attention.name):
- self.attention.build(None)
- if getattr(self, "intermediate", None) is not None:
- with tf.name_scope(self.intermediate.name):
- self.intermediate.build(None)
- if getattr(self, "vit_output", None) is not None:
- with tf.name_scope(self.vit_output.name):
- self.vit_output.build(None)
- if getattr(self, "layernorm_before", None) is not None:
- with tf.name_scope(self.layernorm_before.name):
- self.layernorm_before.build([None, None, self.config.hidden_size])
- if getattr(self, "layernorm_after", None) is not None:
- with tf.name_scope(self.layernorm_after.name):
- self.layernorm_after.build([None, None, self.config.hidden_size])
- class TFViTEncoder(keras.layers.Layer):
- def __init__(self, config: ViTConfig, **kwargs):
- super().__init__(**kwargs)
- self.layer = [TFViTLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
- def call(
- self,
- hidden_states: tf.Tensor,
- head_mask: tf.Tensor,
- output_attentions: bool,
- output_hidden_states: bool,
- return_dict: bool,
- training: bool = False,
- ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
- all_hidden_states = () if output_hidden_states else None
- all_attentions = () if output_attentions else None
- for i, layer_module in enumerate(self.layer):
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- layer_outputs = layer_module(
- hidden_states=hidden_states,
- head_mask=head_mask[i],
- output_attentions=output_attentions,
- training=training,
- )
- hidden_states = layer_outputs[0]
- if output_attentions:
- all_attentions = all_attentions + (layer_outputs[1],)
- # Add last layer
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
- if not return_dict:
- return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
- return TFBaseModelOutput(
- last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
- )
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "layer", None) is not None:
- for layer in self.layer:
- with tf.name_scope(layer.name):
- layer.build(None)
- @keras_serializable
- class TFViTMainLayer(keras.layers.Layer):
- config_class = ViTConfig
- def __init__(self, config: ViTConfig, add_pooling_layer: bool = True, **kwargs):
- super().__init__(**kwargs)
- self.config = config
- self.embeddings = TFViTEmbeddings(config, name="embeddings")
- self.encoder = TFViTEncoder(config, name="encoder")
- self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
- self.pooler = TFViTPooler(config, name="pooler") if add_pooling_layer else None
- def get_input_embeddings(self) -> keras.layers.Layer:
- return self.embeddings.patch_embeddings
- def _prune_heads(self, heads_to_prune):
- """
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
- class PreTrainedModel
- """
- raise NotImplementedError
- @unpack_inputs
- def call(
- self,
- pixel_values: TFModelInputType | None = None,
- head_mask: np.ndarray | tf.Tensor | None = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- interpolate_pos_encoding: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- training: bool = False,
- ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
- if pixel_values is None:
- raise ValueError("You have to specify pixel_values")
- embedding_output = self.embeddings(
- pixel_values=pixel_values,
- interpolate_pos_encoding=interpolate_pos_encoding,
- training=training,
- )
- # Prepare head mask if needed
- # 1.0 in head_mask indicate we keep the head
- # attention_probs has shape bsz x n_heads x N x N
- # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
- # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
- if head_mask is not None:
- raise NotImplementedError
- else:
- head_mask = [None] * self.config.num_hidden_layers
- encoder_outputs = self.encoder(
- hidden_states=embedding_output,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- training=training,
- )
- sequence_output = encoder_outputs[0]
- sequence_output = self.layernorm(inputs=sequence_output)
- pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
- if not return_dict:
- return (sequence_output, pooled_output) + encoder_outputs[1:]
- return TFBaseModelOutputWithPooling(
- last_hidden_state=sequence_output,
- pooler_output=pooled_output,
- hidden_states=encoder_outputs.hidden_states,
- attentions=encoder_outputs.attentions,
- )
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "embeddings", None) is not None:
- with tf.name_scope(self.embeddings.name):
- self.embeddings.build(None)
- if getattr(self, "encoder", None) is not None:
- with tf.name_scope(self.encoder.name):
- self.encoder.build(None)
- if getattr(self, "layernorm", None) is not None:
- with tf.name_scope(self.layernorm.name):
- self.layernorm.build([None, None, self.config.hidden_size])
- if getattr(self, "pooler", None) is not None:
- with tf.name_scope(self.pooler.name):
- self.pooler.build(None)
- class TFViTPreTrainedModel(TFPreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = ViTConfig
- base_model_prefix = "vit"
- main_input_name = "pixel_values"
- VIT_START_DOCSTRING = r"""
- This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
- as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
- behavior.
- <Tip>
- TensorFlow models and layers in `transformers` accept two formats as input:
- - having all inputs as keyword arguments (like PyTorch models), or
- - having all inputs as a list, tuple or dict in the first positional argument.
- The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
- and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
- pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
- format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
- the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
- positional argument:
- - a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)`
- - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
- `model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])`
- - a dictionary with one or several input Tensors associated to the input names given in the docstring:
- `model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})`
- Note that when creating models and layers with
- [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
- about any of this, as you can just pass inputs like you would to any other Python function!
- </Tip>
- Args:
- config ([`ViTConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
- """
- VIT_INPUTS_DOCSTRING = r"""
- Args:
- pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
- Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
- for details.
- head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
- config will be used instead.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
- used instead.
- interpolate_pos_encoding (`bool`, *optional*):
- Whether to interpolate the pre-trained position encodings.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
- eager mode, in graph mode the value will always be set to True.
- training (`bool`, *optional*, defaults to `False``):
- Whether or not to use the model in training mode (some modules like dropout modules have different
- behaviors between training and evaluation).
- """
- @add_start_docstrings(
- "The bare ViT Model transformer outputting raw hidden-states without any specific head on top.",
- VIT_START_DOCSTRING,
- )
- class TFViTModel(TFViTPreTrainedModel):
- def __init__(self, config: ViTConfig, *inputs, add_pooling_layer=True, **kwargs):
- super().__init__(config, *inputs, **kwargs)
- self.vit = TFViTMainLayer(config, add_pooling_layer=add_pooling_layer, name="vit")
- @unpack_inputs
- @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=TFBaseModelOutputWithPooling,
- config_class=_CONFIG_FOR_DOC,
- modality="vision",
- expected_output=_EXPECTED_OUTPUT_SHAPE,
- )
- def call(
- self,
- pixel_values: TFModelInputType | None = None,
- head_mask: np.ndarray | tf.Tensor | None = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- interpolate_pos_encoding: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- training: bool = False,
- ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
- outputs = self.vit(
- pixel_values=pixel_values,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- interpolate_pos_encoding=interpolate_pos_encoding,
- return_dict=return_dict,
- training=training,
- )
- return outputs
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "vit", None) is not None:
- with tf.name_scope(self.vit.name):
- self.vit.build(None)
- class TFViTPooler(keras.layers.Layer):
- def __init__(self, config: ViTConfig, **kwargs):
- super().__init__(**kwargs)
- self.dense = keras.layers.Dense(
- units=config.hidden_size,
- kernel_initializer=get_initializer(config.initializer_range),
- activation="tanh",
- name="dense",
- )
- self.config = config
- def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
- # We "pool" the model by simply taking the hidden state corresponding
- # to the first token.
- first_token_tensor = hidden_states[:, 0]
- pooled_output = self.dense(inputs=first_token_tensor)
- return pooled_output
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "dense", None) is not None:
- with tf.name_scope(self.dense.name):
- self.dense.build([None, None, self.config.hidden_size])
- @add_start_docstrings(
- """
- ViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
- the [CLS] token) e.g. for ImageNet.
- <Tip>
- Note that it's possible to fine-tune ViT on higher resolution images than the ones it has been trained on, by
- setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained
- position embeddings to the higher resolution.
- </Tip>
- """,
- VIT_START_DOCSTRING,
- )
- class TFViTForImageClassification(TFViTPreTrainedModel, TFSequenceClassificationLoss):
- def __init__(self, config: ViTConfig, *inputs, **kwargs):
- super().__init__(config, *inputs, **kwargs)
- self.num_labels = config.num_labels
- self.vit = TFViTMainLayer(config, add_pooling_layer=False, name="vit")
- # Classifier head
- self.classifier = keras.layers.Dense(
- units=config.num_labels,
- kernel_initializer=get_initializer(config.initializer_range),
- name="classifier",
- )
- self.config = config
- @unpack_inputs
- @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_IMAGE_CLASS_CHECKPOINT,
- output_type=TFSequenceClassifierOutput,
- config_class=_CONFIG_FOR_DOC,
- expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
- )
- def call(
- self,
- pixel_values: TFModelInputType | None = None,
- head_mask: np.ndarray | tf.Tensor | None = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- interpolate_pos_encoding: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- labels: np.ndarray | tf.Tensor | None = None,
- training: Optional[bool] = False,
- ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
- r"""
- labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
- Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- outputs = self.vit(
- pixel_values=pixel_values,
- head_mask=head_mask,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- interpolate_pos_encoding=interpolate_pos_encoding,
- return_dict=return_dict,
- training=training,
- )
- sequence_output = outputs[0]
- logits = self.classifier(inputs=sequence_output[:, 0, :])
- loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
- if not return_dict:
- output = (logits,) + outputs[2:]
- return ((loss,) + output) if loss is not None else output
- return TFSequenceClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
- def build(self, input_shape=None):
- if self.built:
- return
- self.built = True
- if getattr(self, "vit", None) is not None:
- with tf.name_scope(self.vit.name):
- self.vit.build(None)
- if getattr(self, "classifier", None) is not None:
- with tf.name_scope(self.classifier.name):
- self.classifier.build([None, None, self.config.hidden_size])
|