| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243 |
- # coding=utf-8
- # Copyright 2023 The Kakao Enterprise Authors, the MMS-TTS Authors and the HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Tokenization class for VITS."""
- import json
- import os
- import re
- from typing import Any, Dict, List, Optional, Tuple, Union
- from ...tokenization_utils import PreTrainedTokenizer
- from ...utils import is_phonemizer_available, is_uroman_available, logging
- if is_phonemizer_available():
- import phonemizer
- if is_uroman_available():
- import uroman as ur
- logger = logging.get_logger(__name__)
- VOCAB_FILES_NAMES = {"vocab_file": "vocab.json"}
- def has_non_roman_characters(input_string):
- # Find any character outside the ASCII range
- non_roman_pattern = re.compile(r"[^\x00-\x7F]")
- # Search the input string for non-Roman characters
- match = non_roman_pattern.search(input_string)
- has_non_roman = match is not None
- return has_non_roman
- class VitsTokenizer(PreTrainedTokenizer):
- """
- Construct a VITS tokenizer. Also supports MMS-TTS.
- This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
- this superclass for more information regarding those methods.
- Args:
- vocab_file (`str`):
- Path to the vocabulary file.
- language (`str`, *optional*):
- Language identifier.
- add_blank (`bool`, *optional*, defaults to `True`):
- Whether to insert token id 0 in between the other tokens.
- normalize (`bool`, *optional*, defaults to `True`):
- Whether to normalize the input text by removing all casing and punctuation.
- phonemize (`bool`, *optional*, defaults to `True`):
- Whether to convert the input text into phonemes.
- is_uroman (`bool`, *optional*, defaults to `False`):
- Whether the `uroman` Romanizer needs to be applied to the input text prior to tokenizing.
- """
- vocab_files_names = VOCAB_FILES_NAMES
- model_input_names = ["input_ids", "attention_mask"]
- def __init__(
- self,
- vocab_file,
- pad_token="<pad>",
- unk_token="<unk>",
- language=None,
- add_blank=True,
- normalize=True,
- phonemize=True,
- is_uroman=False,
- **kwargs,
- ) -> None:
- with open(vocab_file, encoding="utf-8") as vocab_handle:
- self.encoder = json.load(vocab_handle)
- self.decoder = {v: k for k, v in self.encoder.items()}
- self.language = language
- self.add_blank = add_blank
- self.normalize = normalize
- self.phonemize = phonemize
- self.is_uroman = is_uroman
- super().__init__(
- pad_token=pad_token,
- unk_token=unk_token,
- language=language,
- add_blank=add_blank,
- normalize=normalize,
- phonemize=phonemize,
- is_uroman=is_uroman,
- **kwargs,
- )
- @property
- def vocab_size(self):
- return len(self.encoder)
- def get_vocab(self):
- vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
- vocab.update(self.added_tokens_encoder)
- return vocab
- def normalize_text(self, input_string):
- """Lowercase the input string, respecting any special token ids that may be part or entirely upper-cased."""
- all_vocabulary = list(self.encoder.keys()) + list(self.added_tokens_encoder.keys())
- filtered_text = ""
- i = 0
- while i < len(input_string):
- found_match = False
- for word in all_vocabulary:
- if input_string[i : i + len(word)] == word:
- filtered_text += word
- i += len(word)
- found_match = True
- break
- if not found_match:
- filtered_text += input_string[i].lower()
- i += 1
- return filtered_text
- def _preprocess_char(self, text):
- """Special treatment of characters in certain languages"""
- if self.language == "ron":
- text = text.replace("ț", "ţ")
- return text
- def prepare_for_tokenization(
- self, text: str, is_split_into_words: bool = False, normalize: Optional[bool] = None, **kwargs
- ) -> Tuple[str, Dict[str, Any]]:
- """
- Performs any necessary transformations before tokenization.
- This method should pop the arguments from kwargs and return the remaining `kwargs` as well. We test the
- `kwargs` at the end of the encoding process to be sure all the arguments have been used.
- Args:
- text (`str`):
- The text to prepare.
- is_split_into_words (`bool`, *optional*, defaults to `False`):
- Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the
- tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
- which it will tokenize.
- normalize (`bool`, *optional*, defaults to `None`):
- Whether or not to apply punctuation and casing normalization to the text inputs. Typically, VITS is
- trained on lower-cased and un-punctuated text. Hence, normalization is used to ensure that the input
- text consists only of lower-case characters.
- kwargs (`Dict[str, Any]`, *optional*):
- Keyword arguments to use for the tokenization.
- Returns:
- `Tuple[str, Dict[str, Any]]`: The prepared text and the unused kwargs.
- """
- normalize = normalize if normalize is not None else self.normalize
- if normalize:
- # normalise for casing
- text = self.normalize_text(text)
- filtered_text = self._preprocess_char(text)
- if has_non_roman_characters(filtered_text) and self.is_uroman:
- if not is_uroman_available():
- logger.warning(
- "Text to the tokenizer contains non-Roman characters. To apply the `uroman` pre-processing "
- "step automatically, ensure the `uroman` Romanizer is installed with: `pip install uroman` "
- "Note `uroman` requires python version >= 3.10"
- "Otherwise, apply the Romanizer manually as per the instructions: https://github.com/isi-nlp/uroman"
- )
- else:
- uroman = ur.Uroman()
- filtered_text = uroman.romanize_string(filtered_text)
- if self.phonemize:
- if not is_phonemizer_available():
- raise ImportError("Please install the `phonemizer` Python package to use this tokenizer.")
- filtered_text = phonemizer.phonemize(
- filtered_text,
- language="en-us",
- backend="espeak",
- strip=True,
- preserve_punctuation=True,
- with_stress=True,
- )
- filtered_text = re.sub(r"\s+", " ", filtered_text)
- elif normalize:
- # strip any chars outside of the vocab (punctuation)
- filtered_text = "".join(list(filter(lambda char: char in self.encoder, filtered_text))).strip()
- return filtered_text, kwargs
- def _tokenize(self, text: str) -> List[str]:
- """Tokenize a string by inserting the `<pad>` token at the boundary between adjacent characters."""
- tokens = list(text)
- if self.add_blank:
- interspersed = [self._convert_id_to_token(0)] * (len(tokens) * 2 + 1)
- interspersed[1::2] = tokens
- tokens = interspersed
- return tokens
- def convert_tokens_to_string(self, tokens: List[str]) -> str:
- if self.add_blank and len(tokens) > 1:
- tokens = tokens[1::2]
- return "".join(tokens)
- def _convert_token_to_id(self, token):
- """Converts a token (str) in an id using the vocab."""
- return self.encoder.get(token, self.encoder.get(self.unk_token))
- def _convert_id_to_token(self, index):
- """Converts an index (integer) in a token (str) using the vocab."""
- return self.decoder.get(index)
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Union[Tuple[str], None]:
- if not os.path.isdir(save_directory):
- logger.error(f"Vocabulary path ({save_directory}) should be a directory")
- return
- vocab_file = os.path.join(
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
- )
- with open(vocab_file, "w", encoding="utf-8") as f:
- f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
- return (vocab_file,)
|