| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- # coding=utf-8
- # Copyright 2022 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Speech processor class for Whisper
- """
- from ...processing_utils import ProcessorMixin
- class WhisperProcessor(ProcessorMixin):
- r"""
- Constructs a Whisper processor which wraps a Whisper feature extractor and a Whisper tokenizer into a single
- processor.
- [`WhisperProcessor`] offers all the functionalities of [`WhisperFeatureExtractor`] and [`WhisperTokenizer`]. See
- the [`~WhisperProcessor.__call__`] and [`~WhisperProcessor.decode`] for more information.
- Args:
- feature_extractor (`WhisperFeatureExtractor`):
- An instance of [`WhisperFeatureExtractor`]. The feature extractor is a required input.
- tokenizer (`WhisperTokenizer`):
- An instance of [`WhisperTokenizer`]. The tokenizer is a required input.
- """
- feature_extractor_class = "WhisperFeatureExtractor"
- tokenizer_class = "WhisperTokenizer"
- def __init__(self, feature_extractor, tokenizer):
- super().__init__(feature_extractor, tokenizer)
- self.current_processor = self.feature_extractor
- self._in_target_context_manager = False
- def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True):
- return self.tokenizer.get_decoder_prompt_ids(task=task, language=language, no_timestamps=no_timestamps)
- def __call__(self, *args, **kwargs):
- """
- Forwards the `audio` argument to WhisperFeatureExtractor's [`~WhisperFeatureExtractor.__call__`] and the `text`
- argument to [`~WhisperTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more
- information.
- """
- # For backward compatibility
- if self._in_target_context_manager:
- return self.current_processor(*args, **kwargs)
- audio = kwargs.pop("audio", None)
- sampling_rate = kwargs.pop("sampling_rate", None)
- text = kwargs.pop("text", None)
- if len(args) > 0:
- audio = args[0]
- args = args[1:]
- if audio is None and text is None:
- raise ValueError("You need to specify either an `audio` or `text` input to process.")
- if audio is not None:
- inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
- if text is not None:
- encodings = self.tokenizer(text, **kwargs)
- if text is None:
- return inputs
- elif audio is None:
- return encodings
- else:
- inputs["labels"] = encodings["input_ids"]
- return inputs
- def batch_decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to WhisperTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
- refer to the docstring of this method for more information.
- """
- return self.tokenizer.batch_decode(*args, **kwargs)
- def decode(self, *args, **kwargs):
- """
- This method forwards all its arguments to WhisperTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
- the docstring of this method for more information.
- """
- return self.tokenizer.decode(*args, **kwargs)
- def get_prompt_ids(self, text: str, return_tensors="np"):
- return self.tokenizer.get_prompt_ids(text, return_tensors=return_tensors)
|