| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227 |
- # Copyright 2023 The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import warnings
- from typing import List, Union
- import numpy as np
- from ..utils import (
- ExplicitEnum,
- add_end_docstrings,
- is_tf_available,
- is_torch_available,
- is_vision_available,
- logging,
- requires_backends,
- )
- from .base import Pipeline, build_pipeline_init_args
- if is_vision_available():
- from PIL import Image
- from ..image_utils import load_image
- if is_tf_available():
- from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
- if is_torch_available():
- import torch
- from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
- logger = logging.get_logger(__name__)
- # Copied from transformers.pipelines.text_classification.sigmoid
- def sigmoid(_outputs):
- return 1.0 / (1.0 + np.exp(-_outputs))
- # Copied from transformers.pipelines.text_classification.softmax
- def softmax(_outputs):
- maxes = np.max(_outputs, axis=-1, keepdims=True)
- shifted_exp = np.exp(_outputs - maxes)
- return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True)
- # Copied from transformers.pipelines.text_classification.ClassificationFunction
- class ClassificationFunction(ExplicitEnum):
- SIGMOID = "sigmoid"
- SOFTMAX = "softmax"
- NONE = "none"
- @add_end_docstrings(
- build_pipeline_init_args(has_image_processor=True),
- r"""
- function_to_apply (`str`, *optional*, defaults to `"default"`):
- The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:
- - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model
- has several labels, will apply the softmax function on the output.
- - `"sigmoid"`: Applies the sigmoid function on the output.
- - `"softmax"`: Applies the softmax function on the output.
- - `"none"`: Does not apply any function on the output.""",
- )
- class ImageClassificationPipeline(Pipeline):
- """
- Image classification pipeline using any `AutoModelForImageClassification`. This pipeline predicts the class of an
- image.
- Example:
- ```python
- >>> from transformers import pipeline
- >>> classifier = pipeline(model="microsoft/beit-base-patch16-224-pt22k-ft22k")
- >>> classifier("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png")
- [{'score': 0.442, 'label': 'macaw'}, {'score': 0.088, 'label': 'popinjay'}, {'score': 0.075, 'label': 'parrot'}, {'score': 0.073, 'label': 'parodist, lampooner'}, {'score': 0.046, 'label': 'poll, poll_parrot'}]
- ```
- Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
- This image classification pipeline can currently be loaded from [`pipeline`] using the following task identifier:
- `"image-classification"`.
- See the list of available models on
- [huggingface.co/models](https://huggingface.co/models?filter=image-classification).
- """
- function_to_apply: ClassificationFunction = ClassificationFunction.NONE
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- requires_backends(self, "vision")
- self.check_model_type(
- TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
- if self.framework == "tf"
- else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
- )
- def _sanitize_parameters(self, top_k=None, function_to_apply=None, timeout=None):
- preprocess_params = {}
- if timeout is not None:
- warnings.warn(
- "The `timeout` argument is deprecated and will be removed in version 5 of Transformers", FutureWarning
- )
- preprocess_params["timeout"] = timeout
- postprocess_params = {}
- if top_k is not None:
- postprocess_params["top_k"] = top_k
- if isinstance(function_to_apply, str):
- function_to_apply = ClassificationFunction(function_to_apply.lower())
- if function_to_apply is not None:
- postprocess_params["function_to_apply"] = function_to_apply
- return preprocess_params, {}, postprocess_params
- def __call__(self, inputs: Union[str, List[str], "Image.Image", List["Image.Image"]] = None, **kwargs):
- """
- Assign labels to the image(s) passed as inputs.
- Args:
- inputs (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`):
- The pipeline handles three types of images:
- - A string containing a http link pointing to an image
- - A string containing a local path to an image
- - An image loaded in PIL directly
- The pipeline accepts either a single image or a batch of images, which must then be passed as a string.
- Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL
- images.
- function_to_apply (`str`, *optional*, defaults to `"default"`):
- The function to apply to the model outputs in order to retrieve the scores. Accepts four different
- values:
- If this argument is not specified, then it will apply the following functions according to the number
- of labels:
- - If the model has a single label, will apply the sigmoid function on the output.
- - If the model has several labels, will apply the softmax function on the output.
- Possible values are:
- - `"sigmoid"`: Applies the sigmoid function on the output.
- - `"softmax"`: Applies the softmax function on the output.
- - `"none"`: Does not apply any function on the output.
- top_k (`int`, *optional*, defaults to 5):
- The number of top labels that will be returned by the pipeline. If the provided number is higher than
- the number of labels available in the model configuration, it will default to the number of labels.
- Return:
- A dictionary or a list of dictionaries containing result. If the input is a single image, will return a
- dictionary, if the input is a list of several images, will return a list of dictionaries corresponding to
- the images.
- The dictionaries contain the following keys:
- - **label** (`str`) -- The label identified by the model.
- - **score** (`int`) -- The score attributed by the model for that label.
- """
- # After deprecation of this is completed, remove the default `None` value for `images`
- if "images" in kwargs:
- inputs = kwargs.pop("images")
- if inputs is None:
- raise ValueError("Cannot call the image-classification pipeline without an inputs argument!")
- return super().__call__(inputs, **kwargs)
- def preprocess(self, image, timeout=None):
- image = load_image(image, timeout=timeout)
- model_inputs = self.image_processor(images=image, return_tensors=self.framework)
- if self.framework == "pt":
- model_inputs = model_inputs.to(self.torch_dtype)
- return model_inputs
- def _forward(self, model_inputs):
- model_outputs = self.model(**model_inputs)
- return model_outputs
- def postprocess(self, model_outputs, function_to_apply=None, top_k=5):
- if function_to_apply is None:
- if self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels == 1:
- function_to_apply = ClassificationFunction.SIGMOID
- elif self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels > 1:
- function_to_apply = ClassificationFunction.SOFTMAX
- elif hasattr(self.model.config, "function_to_apply") and function_to_apply is None:
- function_to_apply = self.model.config.function_to_apply
- else:
- function_to_apply = ClassificationFunction.NONE
- if top_k > self.model.config.num_labels:
- top_k = self.model.config.num_labels
- outputs = model_outputs["logits"][0]
- if self.framework == "pt" and outputs.dtype in (torch.bfloat16, torch.float16):
- outputs = outputs.to(torch.float32).numpy()
- else:
- outputs = outputs.numpy()
- if function_to_apply == ClassificationFunction.SIGMOID:
- scores = sigmoid(outputs)
- elif function_to_apply == ClassificationFunction.SOFTMAX:
- scores = softmax(outputs)
- elif function_to_apply == ClassificationFunction.NONE:
- scores = outputs
- else:
- raise ValueError(f"Unrecognized `function_to_apply` argument: {function_to_apply}")
- dict_scores = [
- {"label": self.model.config.id2label[i], "score": score.item()} for i, score in enumerate(scores)
- ]
- dict_scores.sort(key=lambda x: x["score"], reverse=True)
- if top_k is not None:
- dict_scores = dict_scores[:top_k]
- return dict_scores
|