| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 |
- from typing import Dict
- from ..utils import add_end_docstrings, is_vision_available
- from .base import GenericTensor, Pipeline, build_pipeline_init_args
- if is_vision_available():
- from ..image_utils import load_image
- @add_end_docstrings(
- build_pipeline_init_args(has_image_processor=True),
- """
- image_processor_kwargs (`dict`, *optional*):
- Additional dictionary of keyword arguments passed along to the image processor e.g.
- {"size": {"height": 100, "width": 100}}
- pool (`bool`, *optional*, defaults to `False`):
- Whether or not to return the pooled output. If `False`, the model will return the raw hidden states.
- """,
- )
- class ImageFeatureExtractionPipeline(Pipeline):
- """
- Image feature extraction pipeline uses no model head. This pipeline extracts the hidden states from the base
- transformer, which can be used as features in downstream tasks.
- Example:
- ```python
- >>> from transformers import pipeline
- >>> extractor = pipeline(model="google/vit-base-patch16-224", task="image-feature-extraction")
- >>> result = extractor("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", return_tensors=True)
- >>> result.shape # This is a tensor of shape [1, sequence_lenth, hidden_dimension] representing the input image.
- torch.Size([1, 197, 768])
- ```
- Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
- This image feature extraction pipeline can currently be loaded from [`pipeline`] using the task identifier:
- `"image-feature-extraction"`.
- All vision models may be used for this pipeline. See a list of all models, including community-contributed models on
- [huggingface.co/models](https://huggingface.co/models).
- """
- def _sanitize_parameters(self, image_processor_kwargs=None, return_tensors=None, pool=None, **kwargs):
- preprocess_params = {} if image_processor_kwargs is None else image_processor_kwargs
- postprocess_params = {}
- if pool is not None:
- postprocess_params["pool"] = pool
- if return_tensors is not None:
- postprocess_params["return_tensors"] = return_tensors
- if "timeout" in kwargs:
- preprocess_params["timeout"] = kwargs["timeout"]
- return preprocess_params, {}, postprocess_params
- def preprocess(self, image, timeout=None, **image_processor_kwargs) -> Dict[str, GenericTensor]:
- image = load_image(image, timeout=timeout)
- model_inputs = self.image_processor(image, return_tensors=self.framework, **image_processor_kwargs)
- if self.framework == "pt":
- model_inputs = model_inputs.to(self.torch_dtype)
- return model_inputs
- def _forward(self, model_inputs):
- model_outputs = self.model(**model_inputs)
- return model_outputs
- def postprocess(self, model_outputs, pool=None, return_tensors=False):
- pool = pool if pool is not None else False
- if pool:
- if "pooler_output" not in model_outputs:
- raise ValueError(
- "No pooled output was returned. Make sure the model has a `pooler` layer when using the `pool` option."
- )
- outputs = model_outputs["pooler_output"]
- else:
- # [0] is the first available tensor, logits or last_hidden_state.
- outputs = model_outputs[0]
- if return_tensors:
- return outputs
- if self.framework == "pt":
- return outputs.tolist()
- elif self.framework == "tf":
- return outputs.numpy().tolist()
- def __call__(self, *args, **kwargs):
- """
- Extract the features of the input(s).
- Args:
- images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`):
- The pipeline handles three types of images:
- - A string containing a http link pointing to an image
- - A string containing a local path to an image
- - An image loaded in PIL directly
- The pipeline accepts either a single image or a batch of images, which must then be passed as a string.
- Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL
- images.
- timeout (`float`, *optional*, defaults to None):
- The maximum time in seconds to wait for fetching images from the web. If None, no timeout is used and
- the call may block forever.
- Return:
- A nested list of `float`: The features computed by the model.
- """
- return super().__call__(*args, **kwargs)
|