| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184 |
- # Copyright 2024 The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import warnings
- from io import BytesIO
- from typing import List, Union
- import requests
- from ..utils import (
- add_end_docstrings,
- is_av_available,
- is_torch_available,
- logging,
- requires_backends,
- )
- from .base import Pipeline, build_pipeline_init_args
- if is_av_available():
- import av
- import numpy as np
- if is_torch_available():
- from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES
- logger = logging.get_logger(__name__)
- @add_end_docstrings(build_pipeline_init_args(has_image_processor=True))
- class VideoClassificationPipeline(Pipeline):
- """
- Video classification pipeline using any `AutoModelForVideoClassification`. This pipeline predicts the class of a
- video.
- This video classification pipeline can currently be loaded from [`pipeline`] using the following task identifier:
- `"video-classification"`.
- See the list of available models on
- [huggingface.co/models](https://huggingface.co/models?filter=video-classification).
- """
- def __init__(self, *args, **kwargs):
- super().__init__(*args, **kwargs)
- requires_backends(self, "av")
- self.check_model_type(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES)
- def _sanitize_parameters(self, top_k=None, num_frames=None, frame_sampling_rate=None, function_to_apply=None):
- preprocess_params = {}
- if frame_sampling_rate is not None:
- preprocess_params["frame_sampling_rate"] = frame_sampling_rate
- if num_frames is not None:
- preprocess_params["num_frames"] = num_frames
- postprocess_params = {}
- if top_k is not None:
- postprocess_params["top_k"] = top_k
- if function_to_apply is not None:
- if function_to_apply not in ["softmax", "sigmoid", "none"]:
- raise ValueError(
- f"Invalid value for `function_to_apply`: {function_to_apply}. "
- "Valid options are ['softmax', 'sigmoid', 'none']"
- )
- postprocess_params["function_to_apply"] = function_to_apply
- else:
- postprocess_params["function_to_apply"] = "softmax"
- return preprocess_params, {}, postprocess_params
- def __call__(self, inputs: Union[str, List[str]] = None, **kwargs):
- """
- Assign labels to the video(s) passed as inputs.
- Args:
- inputs (`str`, `List[str]`):
- The pipeline handles three types of videos:
- - A string containing a http link pointing to a video
- - A string containing a local path to a video
- The pipeline accepts either a single video or a batch of videos, which must then be passed as a string.
- Videos in a batch must all be in the same format: all as http links or all as local paths.
- top_k (`int`, *optional*, defaults to 5):
- The number of top labels that will be returned by the pipeline. If the provided number is higher than
- the number of labels available in the model configuration, it will default to the number of labels.
- num_frames (`int`, *optional*, defaults to `self.model.config.num_frames`):
- The number of frames sampled from the video to run the classification on. If not provided, will default
- to the number of frames specified in the model configuration.
- frame_sampling_rate (`int`, *optional*, defaults to 1):
- The sampling rate used to select frames from the video. If not provided, will default to 1, i.e. every
- frame will be used.
- function_to_apply(`str`, *optional*, defaults to "softmax"):
- The function to apply to the model output. By default, the pipeline will apply the softmax function to
- the output of the model. Valid options: ["softmax", "sigmoid", "none"]. Note that passing Python's
- built-in `None` will default to "softmax", so you need to pass the string "none" to disable any
- post-processing.
- Return:
- A dictionary or a list of dictionaries containing result. If the input is a single video, will return a
- dictionary, if the input is a list of several videos, will return a list of dictionaries corresponding to
- the videos.
- The dictionaries contain the following keys:
- - **label** (`str`) -- The label identified by the model.
- - **score** (`int`) -- The score attributed by the model for that label.
- """
- # After deprecation of this is completed, remove the default `None` value for `images`
- if "videos" in kwargs:
- warnings.warn(
- "The `videos` argument has been renamed to `inputs`. In version 5 of Transformers, `videos` will no longer be accepted",
- FutureWarning,
- )
- inputs = kwargs.pop("videos")
- if inputs is None:
- raise ValueError("Cannot call the video-classification pipeline without an inputs argument!")
- return super().__call__(inputs, **kwargs)
- def preprocess(self, video, num_frames=None, frame_sampling_rate=1):
- if num_frames is None:
- num_frames = self.model.config.num_frames
- if video.startswith("http://") or video.startswith("https://"):
- video = BytesIO(requests.get(video).content)
- container = av.open(video)
- start_idx = 0
- end_idx = num_frames * frame_sampling_rate - 1
- indices = np.linspace(start_idx, end_idx, num=num_frames, dtype=np.int64)
- video = read_video_pyav(container, indices)
- video = list(video)
- model_inputs = self.image_processor(video, return_tensors=self.framework)
- if self.framework == "pt":
- model_inputs = model_inputs.to(self.torch_dtype)
- return model_inputs
- def _forward(self, model_inputs):
- model_outputs = self.model(**model_inputs)
- return model_outputs
- def postprocess(self, model_outputs, top_k=5, function_to_apply="softmax"):
- if top_k > self.model.config.num_labels:
- top_k = self.model.config.num_labels
- if self.framework == "pt":
- if function_to_apply == "softmax":
- probs = model_outputs.logits[0].softmax(-1)
- elif function_to_apply == "sigmoid":
- probs = model_outputs.logits[0].sigmoid()
- else:
- probs = model_outputs.logits[0]
- scores, ids = probs.topk(top_k)
- else:
- raise ValueError(f"Unsupported framework: {self.framework}")
- scores = scores.tolist()
- ids = ids.tolist()
- return [{"score": score, "label": self.model.config.id2label[_id]} for score, _id in zip(scores, ids)]
- def read_video_pyav(container, indices):
- frames = []
- container.seek(0)
- start_index = indices[0]
- end_index = indices[-1]
- for i, frame in enumerate(container.decode(video=0)):
- if i > end_index:
- break
- if i >= start_index and i in indices:
- frames.append(frame)
- return np.stack([x.to_ndarray(format="rgb24") for x in frames])
|