| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- # coding=utf-8
- # Copyright 2023 The HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from collections import UserDict
- from typing import Union
- import numpy as np
- import requests
- from ..utils import (
- add_end_docstrings,
- logging,
- )
- from .audio_classification import ffmpeg_read
- from .base import Pipeline, build_pipeline_init_args
- logger = logging.get_logger(__name__)
- @add_end_docstrings(build_pipeline_init_args(has_feature_extractor=True, has_tokenizer=True))
- class ZeroShotAudioClassificationPipeline(Pipeline):
- """
- Zero shot audio classification pipeline using `ClapModel`. This pipeline predicts the class of an audio when you
- provide an audio and a set of `candidate_labels`.
- <Tip warning={true}>
- The default `hypothesis_template` is : `"This is a sound of {}."`. Make sure you update it for your usage.
- </Tip>
- Example:
- ```python
- >>> from transformers import pipeline
- >>> from datasets import load_dataset
- >>> dataset = load_dataset("ashraq/esc50")
- >>> audio = next(iter(dataset["train"]["audio"]))["array"]
- >>> classifier = pipeline(task="zero-shot-audio-classification", model="laion/clap-htsat-unfused")
- >>> classifier(audio, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"])
- [{'score': 0.9996, 'label': 'Sound of a dog'}, {'score': 0.0004, 'label': 'Sound of vaccum cleaner'}]
- ```
- Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This audio
- classification pipeline can currently be loaded from [`pipeline`] using the following task identifier:
- `"zero-shot-audio-classification"`. See the list of available models on
- [huggingface.co/models](https://huggingface.co/models?filter=zero-shot-audio-classification).
- """
- def __init__(self, **kwargs):
- super().__init__(**kwargs)
- if self.framework != "pt":
- raise ValueError(f"The {self.__class__} is only available in PyTorch.")
- # No specific FOR_XXX available yet
- def __call__(self, audios: Union[np.ndarray, bytes, str], **kwargs):
- """
- Assign labels to the audio(s) passed as inputs.
- Args:
- audios (`str`, `List[str]`, `np.array` or `List[np.array]`):
- The pipeline handles three types of inputs:
- - A string containing a http link pointing to an audio
- - A string containing a local path to an audio
- - An audio loaded in numpy
- candidate_labels (`List[str]`):
- The candidate labels for this audio. They will be formatted using *hypothesis_template*.
- hypothesis_template (`str`, *optional*, defaults to `"This is a sound of {}"`):
- The format used in conjunction with *candidate_labels* to attempt the audio classification by
- replacing the placeholder with the candidate_labels. Pass "{}" if *candidate_labels* are
- already formatted.
- Return:
- A list of dictionaries containing one entry per proposed label. Each dictionary contains the
- following keys:
- - **label** (`str`) -- One of the suggested *candidate_labels*.
- - **score** (`float`) -- The score attributed by the model to that label. It is a value between
- 0 and 1, computed as the `softmax` of `logits_per_audio`.
- """
- return super().__call__(audios, **kwargs)
- def _sanitize_parameters(self, **kwargs):
- preprocess_params = {}
- if "candidate_labels" in kwargs:
- preprocess_params["candidate_labels"] = kwargs["candidate_labels"]
- if "hypothesis_template" in kwargs:
- preprocess_params["hypothesis_template"] = kwargs["hypothesis_template"]
- return preprocess_params, {}, {}
- def preprocess(self, audio, candidate_labels=None, hypothesis_template="This is a sound of {}."):
- if isinstance(audio, str):
- if audio.startswith("http://") or audio.startswith("https://"):
- # We need to actually check for a real protocol, otherwise it's impossible to use a local file
- # like http_huggingface_co.png
- audio = requests.get(audio).content
- else:
- with open(audio, "rb") as f:
- audio = f.read()
- if isinstance(audio, bytes):
- audio = ffmpeg_read(audio, self.feature_extractor.sampling_rate)
- if not isinstance(audio, np.ndarray):
- raise TypeError("We expect a numpy ndarray as input")
- if len(audio.shape) != 1:
- raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline")
- inputs = self.feature_extractor(
- [audio], sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt"
- )
- if self.framework == "pt":
- inputs = inputs.to(self.torch_dtype)
- inputs["candidate_labels"] = candidate_labels
- sequences = [hypothesis_template.format(x) for x in candidate_labels]
- text_inputs = self.tokenizer(sequences, return_tensors=self.framework, padding=True)
- inputs["text_inputs"] = [text_inputs]
- return inputs
- def _forward(self, model_inputs):
- candidate_labels = model_inputs.pop("candidate_labels")
- text_inputs = model_inputs.pop("text_inputs")
- if isinstance(text_inputs[0], UserDict):
- text_inputs = text_inputs[0]
- else:
- # Batching case.
- text_inputs = text_inputs[0][0]
- outputs = self.model(**text_inputs, **model_inputs)
- model_outputs = {
- "candidate_labels": candidate_labels,
- "logits": outputs.logits_per_audio,
- }
- return model_outputs
- def postprocess(self, model_outputs):
- candidate_labels = model_outputs.pop("candidate_labels")
- logits = model_outputs["logits"][0]
- if self.framework == "pt":
- probs = logits.softmax(dim=0)
- scores = probs.tolist()
- else:
- raise ValueError("`tf` framework not supported.")
- result = [
- {"score": score, "label": candidate_label}
- for score, candidate_label in sorted(zip(scores, candidate_labels), key=lambda x: -x[0])
- ]
- return result
|