| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268 |
- import inspect
- from typing import List, Union
- import numpy as np
- from ..tokenization_utils import TruncationStrategy
- from ..utils import add_end_docstrings, logging
- from .base import ArgumentHandler, ChunkPipeline, build_pipeline_init_args
- logger = logging.get_logger(__name__)
- class ZeroShotClassificationArgumentHandler(ArgumentHandler):
- """
- Handles arguments for zero-shot for text classification by turning each possible label into an NLI
- premise/hypothesis pair.
- """
- def _parse_labels(self, labels):
- if isinstance(labels, str):
- labels = [label.strip() for label in labels.split(",") if label.strip()]
- return labels
- def __call__(self, sequences, labels, hypothesis_template):
- if len(labels) == 0 or len(sequences) == 0:
- raise ValueError("You must include at least one label and at least one sequence.")
- if hypothesis_template.format(labels[0]) == hypothesis_template:
- raise ValueError(
- (
- 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. '
- "Make sure the passed template includes formatting syntax such as {{}} where the label should go."
- ).format(hypothesis_template)
- )
- if isinstance(sequences, str):
- sequences = [sequences]
- sequence_pairs = []
- for sequence in sequences:
- sequence_pairs.extend([[sequence, hypothesis_template.format(label)] for label in labels])
- return sequence_pairs, sequences
- @add_end_docstrings(build_pipeline_init_args(has_tokenizer=True))
- class ZeroShotClassificationPipeline(ChunkPipeline):
- """
- NLI-based zero-shot classification pipeline using a `ModelForSequenceClassification` trained on NLI (natural
- language inference) tasks. Equivalent of `text-classification` pipelines, but these models don't require a
- hardcoded number of potential classes, they can be chosen at runtime. It usually means it's slower but it is
- **much** more flexible.
- Any combination of sequences and labels can be passed and each combination will be posed as a premise/hypothesis
- pair and passed to the pretrained model. Then, the logit for *entailment* is taken as the logit for the candidate
- label being valid. Any NLI model can be used, but the id of the *entailment* label must be included in the model
- config's :attr:*~transformers.PretrainedConfig.label2id*.
- Example:
- ```python
- >>> from transformers import pipeline
- >>> oracle = pipeline(model="facebook/bart-large-mnli")
- >>> oracle(
- ... "I have a problem with my iphone that needs to be resolved asap!!",
- ... candidate_labels=["urgent", "not urgent", "phone", "tablet", "computer"],
- ... )
- {'sequence': 'I have a problem with my iphone that needs to be resolved asap!!', 'labels': ['urgent', 'phone', 'computer', 'not urgent', 'tablet'], 'scores': [0.504, 0.479, 0.013, 0.003, 0.002]}
- >>> oracle(
- ... "I have a problem with my iphone that needs to be resolved asap!!",
- ... candidate_labels=["english", "german"],
- ... )
- {'sequence': 'I have a problem with my iphone that needs to be resolved asap!!', 'labels': ['english', 'german'], 'scores': [0.814, 0.186]}
- ```
- Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
- This NLI pipeline can currently be loaded from [`pipeline`] using the following task identifier:
- `"zero-shot-classification"`.
- The models that this pipeline can use are models that have been fine-tuned on an NLI task. See the up-to-date list
- of available models on [huggingface.co/models](https://huggingface.co/models?search=nli).
- """
- def __init__(self, args_parser=ZeroShotClassificationArgumentHandler(), *args, **kwargs):
- self._args_parser = args_parser
- super().__init__(*args, **kwargs)
- if self.entailment_id == -1:
- logger.warning(
- "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to "
- "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs."
- )
- @property
- def entailment_id(self):
- for label, ind in self.model.config.label2id.items():
- if label.lower().startswith("entail"):
- return ind
- return -1
- def _parse_and_tokenize(
- self, sequence_pairs, padding=True, add_special_tokens=True, truncation=TruncationStrategy.ONLY_FIRST, **kwargs
- ):
- """
- Parse arguments and tokenize only_first so that hypothesis (label) is not truncated
- """
- return_tensors = self.framework
- if self.tokenizer.pad_token is None:
- # Override for tokenizers not supporting padding
- logger.error(
- "Tokenizer was not supporting padding necessary for zero-shot, attempting to use "
- " `pad_token=eos_token`"
- )
- self.tokenizer.pad_token = self.tokenizer.eos_token
- try:
- inputs = self.tokenizer(
- sequence_pairs,
- add_special_tokens=add_special_tokens,
- return_tensors=return_tensors,
- padding=padding,
- truncation=truncation,
- )
- except Exception as e:
- if "too short" in str(e):
- # tokenizers might yell that we want to truncate
- # to a value that is not even reached by the input.
- # In that case we don't want to truncate.
- # It seems there's not a really better way to catch that
- # exception.
- inputs = self.tokenizer(
- sequence_pairs,
- add_special_tokens=add_special_tokens,
- return_tensors=return_tensors,
- padding=padding,
- truncation=TruncationStrategy.DO_NOT_TRUNCATE,
- )
- else:
- raise e
- return inputs
- def _sanitize_parameters(self, **kwargs):
- if kwargs.get("multi_class", None) is not None:
- kwargs["multi_label"] = kwargs["multi_class"]
- logger.warning(
- "The `multi_class` argument has been deprecated and renamed to `multi_label`. "
- "`multi_class` will be removed in a future version of Transformers."
- )
- preprocess_params = {}
- if "candidate_labels" in kwargs:
- preprocess_params["candidate_labels"] = self._args_parser._parse_labels(kwargs["candidate_labels"])
- if "hypothesis_template" in kwargs:
- preprocess_params["hypothesis_template"] = kwargs["hypothesis_template"]
- postprocess_params = {}
- if "multi_label" in kwargs:
- postprocess_params["multi_label"] = kwargs["multi_label"]
- return preprocess_params, {}, postprocess_params
- def __call__(
- self,
- sequences: Union[str, List[str]],
- *args,
- **kwargs,
- ):
- """
- Classify the sequence(s) given as inputs. See the [`ZeroShotClassificationPipeline`] documentation for more
- information.
- Args:
- sequences (`str` or `List[str]`):
- The sequence(s) to classify, will be truncated if the model input is too large.
- candidate_labels (`str` or `List[str]`):
- The set of possible class labels to classify each sequence into. Can be a single label, a string of
- comma-separated labels, or a list of labels.
- hypothesis_template (`str`, *optional*, defaults to `"This example is {}."`):
- The template used to turn each label into an NLI-style hypothesis. This template must include a {} or
- similar syntax for the candidate label to be inserted into the template. For example, the default
- template is `"This example is {}."` With the candidate label `"sports"`, this would be fed into the
- model like `"<cls> sequence to classify <sep> This example is sports . <sep>"`. The default template
- works well in many cases, but it may be worthwhile to experiment with different templates depending on
- the task setting.
- multi_label (`bool`, *optional*, defaults to `False`):
- Whether or not multiple candidate labels can be true. If `False`, the scores are normalized such that
- the sum of the label likelihoods for each sequence is 1. If `True`, the labels are considered
- independent and probabilities are normalized for each candidate by doing a softmax of the entailment
- score vs. the contradiction score.
- Return:
- A `dict` or a list of `dict`: Each result comes as a dictionary with the following keys:
- - **sequence** (`str`) -- The sequence for which this is the output.
- - **labels** (`List[str]`) -- The labels sorted by order of likelihood.
- - **scores** (`List[float]`) -- The probabilities for each of the labels.
- """
- if len(args) == 0:
- pass
- elif len(args) == 1 and "candidate_labels" not in kwargs:
- kwargs["candidate_labels"] = args[0]
- else:
- raise ValueError(f"Unable to understand extra arguments {args}")
- return super().__call__(sequences, **kwargs)
- def preprocess(self, inputs, candidate_labels=None, hypothesis_template="This example is {}."):
- sequence_pairs, sequences = self._args_parser(inputs, candidate_labels, hypothesis_template)
- for i, (candidate_label, sequence_pair) in enumerate(zip(candidate_labels, sequence_pairs)):
- model_input = self._parse_and_tokenize([sequence_pair])
- yield {
- "candidate_label": candidate_label,
- "sequence": sequences[0],
- "is_last": i == len(candidate_labels) - 1,
- **model_input,
- }
- def _forward(self, inputs):
- candidate_label = inputs["candidate_label"]
- sequence = inputs["sequence"]
- model_inputs = {k: inputs[k] for k in self.tokenizer.model_input_names}
- # `XXXForSequenceClassification` models should not use `use_cache=True` even if it's supported
- model_forward = self.model.forward if self.framework == "pt" else self.model.call
- if "use_cache" in inspect.signature(model_forward).parameters.keys():
- model_inputs["use_cache"] = False
- outputs = self.model(**model_inputs)
- model_outputs = {
- "candidate_label": candidate_label,
- "sequence": sequence,
- "is_last": inputs["is_last"],
- **outputs,
- }
- return model_outputs
- def postprocess(self, model_outputs, multi_label=False):
- candidate_labels = [outputs["candidate_label"] for outputs in model_outputs]
- sequences = [outputs["sequence"] for outputs in model_outputs]
- if self.framework == "pt":
- logits = np.concatenate([output["logits"].float().numpy() for output in model_outputs])
- else:
- logits = np.concatenate([output["logits"].numpy() for output in model_outputs])
- N = logits.shape[0]
- n = len(candidate_labels)
- num_sequences = N // n
- reshaped_outputs = logits.reshape((num_sequences, n, -1))
- if multi_label or len(candidate_labels) == 1:
- # softmax over the entailment vs. contradiction dim for each label independently
- entailment_id = self.entailment_id
- contradiction_id = -1 if entailment_id == 0 else 0
- entail_contr_logits = reshaped_outputs[..., [contradiction_id, entailment_id]]
- scores = np.exp(entail_contr_logits) / np.exp(entail_contr_logits).sum(-1, keepdims=True)
- scores = scores[..., 1]
- else:
- # softmax the "entailment" logits over all candidate labels
- entail_logits = reshaped_outputs[..., self.entailment_id]
- scores = np.exp(entail_logits) / np.exp(entail_logits).sum(-1, keepdims=True)
- top_inds = list(reversed(scores[0].argsort()))
- return {
- "sequence": sequences[0],
- "labels": [candidate_labels[i] for i in top_inds],
- "scores": scores[0, top_inds].tolist(),
- }
|