| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192 |
- import warnings
- from collections import UserDict
- from typing import List, Union
- from ..utils import (
- add_end_docstrings,
- is_tf_available,
- is_torch_available,
- is_vision_available,
- logging,
- requires_backends,
- )
- from .base import Pipeline, build_pipeline_init_args
- if is_vision_available():
- from PIL import Image
- from ..image_utils import load_image
- if is_torch_available():
- import torch
- from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES
- if is_tf_available():
- from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES
- from ..tf_utils import stable_softmax
- logger = logging.get_logger(__name__)
- @add_end_docstrings(build_pipeline_init_args(has_image_processor=True))
- class ZeroShotImageClassificationPipeline(Pipeline):
- """
- Zero shot image classification pipeline using `CLIPModel`. This pipeline predicts the class of an image when you
- provide an image and a set of `candidate_labels`.
- Example:
- ```python
- >>> from transformers import pipeline
- >>> classifier = pipeline(model="google/siglip-so400m-patch14-384")
- >>> classifier(
- ... "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png",
- ... candidate_labels=["animals", "humans", "landscape"],
- ... )
- [{'score': 0.965, 'label': 'animals'}, {'score': 0.03, 'label': 'humans'}, {'score': 0.005, 'label': 'landscape'}]
- >>> classifier(
- ... "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png",
- ... candidate_labels=["black and white", "photorealist", "painting"],
- ... )
- [{'score': 0.996, 'label': 'black and white'}, {'score': 0.003, 'label': 'photorealist'}, {'score': 0.0, 'label': 'painting'}]
- ```
- Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
- This image classification pipeline can currently be loaded from [`pipeline`] using the following task identifier:
- `"zero-shot-image-classification"`.
- See the list of available models on
- [huggingface.co/models](https://huggingface.co/models?filter=zero-shot-image-classification).
- """
- def __init__(self, **kwargs):
- super().__init__(**kwargs)
- requires_backends(self, "vision")
- self.check_model_type(
- TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES
- if self.framework == "tf"
- else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES
- )
- def __call__(self, image: Union[str, List[str], "Image", List["Image"]] = None, **kwargs):
- """
- Assign labels to the image(s) passed as inputs.
- Args:
- image (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`):
- The pipeline handles three types of images:
- - A string containing a http link pointing to an image
- - A string containing a local path to an image
- - An image loaded in PIL directly
- candidate_labels (`List[str]`):
- The candidate labels for this image. They will be formatted using *hypothesis_template*.
- hypothesis_template (`str`, *optional*, defaults to `"This is a photo of {}"`):
- The format used in conjunction with *candidate_labels* to attempt the image classification by
- replacing the placeholder with the candidate_labels. Pass "{}" if *candidate_labels* are
- already formatted.
- Return:
- A list of dictionaries containing one entry per proposed label. Each dictionary contains the
- following keys:
- - **label** (`str`) -- One of the suggested *candidate_labels*.
- - **score** (`float`) -- The score attributed by the model to that label. It is a value between
- 0 and 1, computed as the `softmax` of `logits_per_image`.
- """
- # After deprecation of this is completed, remove the default `None` value for `image`
- if "images" in kwargs:
- image = kwargs.pop("images")
- if image is None:
- raise ValueError("Cannot call the zero-shot-image-classification pipeline without an images argument!")
- return super().__call__(image, **kwargs)
- def _sanitize_parameters(self, tokenizer_kwargs=None, **kwargs):
- preprocess_params = {}
- if "candidate_labels" in kwargs:
- preprocess_params["candidate_labels"] = kwargs["candidate_labels"]
- if "timeout" in kwargs:
- warnings.warn(
- "The `timeout` argument is deprecated and will be removed in version 5 of Transformers", FutureWarning
- )
- preprocess_params["timeout"] = kwargs["timeout"]
- if "hypothesis_template" in kwargs:
- preprocess_params["hypothesis_template"] = kwargs["hypothesis_template"]
- if tokenizer_kwargs is not None:
- warnings.warn(
- "The `tokenizer_kwargs` argument is deprecated and will be removed in version 5 of Transformers",
- FutureWarning,
- )
- preprocess_params["tokenizer_kwargs"] = tokenizer_kwargs
- return preprocess_params, {}, {}
- def preprocess(
- self,
- image,
- candidate_labels=None,
- hypothesis_template="This is a photo of {}.",
- timeout=None,
- tokenizer_kwargs=None,
- ):
- if tokenizer_kwargs is None:
- tokenizer_kwargs = {}
- image = load_image(image, timeout=timeout)
- inputs = self.image_processor(images=[image], return_tensors=self.framework)
- if self.framework == "pt":
- inputs = inputs.to(self.torch_dtype)
- inputs["candidate_labels"] = candidate_labels
- sequences = [hypothesis_template.format(x) for x in candidate_labels]
- padding = "max_length" if self.model.config.model_type == "siglip" else True
- text_inputs = self.tokenizer(sequences, return_tensors=self.framework, padding=padding, **tokenizer_kwargs)
- inputs["text_inputs"] = [text_inputs]
- return inputs
- def _forward(self, model_inputs):
- candidate_labels = model_inputs.pop("candidate_labels")
- text_inputs = model_inputs.pop("text_inputs")
- if isinstance(text_inputs[0], UserDict):
- text_inputs = text_inputs[0]
- else:
- # Batching case.
- text_inputs = text_inputs[0][0]
- outputs = self.model(**text_inputs, **model_inputs)
- model_outputs = {
- "candidate_labels": candidate_labels,
- "logits": outputs.logits_per_image,
- }
- return model_outputs
- def postprocess(self, model_outputs):
- candidate_labels = model_outputs.pop("candidate_labels")
- logits = model_outputs["logits"][0]
- if self.framework == "pt" and self.model.config.model_type == "siglip":
- probs = torch.sigmoid(logits).squeeze(-1)
- scores = probs.tolist()
- if not isinstance(scores, list):
- scores = [scores]
- elif self.framework == "pt":
- probs = logits.softmax(dim=-1).squeeze(-1)
- scores = probs.tolist()
- if not isinstance(scores, list):
- scores = [scores]
- elif self.framework == "tf":
- probs = stable_softmax(logits, axis=-1)
- scores = probs.numpy().tolist()
- else:
- raise ValueError(f"Unsupported framework: {self.framework}")
- result = [
- {"score": score, "label": candidate_label}
- for score, candidate_label in sorted(zip(scores, candidate_labels), key=lambda x: -x[0])
- ]
- return result
|