| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import importlib
- from typing import TYPE_CHECKING, Optional
- from packaging import version
- from .base import HfQuantizer
- if TYPE_CHECKING:
- from ..modeling_utils import PreTrainedModel
- from ..integrations import replace_with_aqlm_linear
- from ..utils import is_accelerate_available, is_aqlm_available, is_torch_available, logging
- from ..utils.quantization_config import QuantizationConfigMixin
- if is_torch_available():
- import torch
- logger = logging.get_logger(__name__)
- class AqlmHfQuantizer(HfQuantizer):
- """
- Quantizer of the AQLM method. Enables the loading of prequantized models.
- """
- requires_calibration = True
- required_packages = ["aqlm"]
- optimum_quantizer = None
- def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs):
- super().__init__(quantization_config, **kwargs)
- self.quantization_config = quantization_config
- def validate_environment(self, *args, **kwargs):
- if not is_accelerate_available():
- raise ImportError("Using `aqlm` quantization requires Accelerate: `pip install accelerate`")
- if not is_aqlm_available():
- raise ImportError("Using `aqlm` quantization requires AQLM: `pip install aqlm[gpu,cpu]`")
- def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
- if torch_dtype is None:
- if torch.cuda.is_available():
- torch_dtype = torch.float16
- logger.info(
- "CUDA available. Assuming AQLM inference on GPU and loading the model in `torch.float16`. To overwrite it, set `torch_dtype` manually."
- )
- else:
- torch_dtype = torch.float32
- logger.info(
- "CUDA is unavailable. Assuming AQLM inference on CPU and loading the model in `torch.float32`. To overwrite it, set `torch_dtype` manually."
- )
- return torch_dtype
- def _process_model_before_weight_loading(
- self,
- model: "PreTrainedModel",
- **kwargs,
- ):
- replace_with_aqlm_linear(
- model,
- quantization_config=self.quantization_config,
- linear_weights_not_to_quantize=self.quantization_config.linear_weights_not_to_quantize,
- )
- model.config.quantization_config = self.quantization_config
- def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
- return model
- @property
- def is_trainable(self, model: Optional["PreTrainedModel"] = None):
- aqlm_supports_training = version.parse(importlib.metadata.version("aqlm")) >= version.parse("1.0.2")
- if aqlm_supports_training:
- return True
- else:
- logger.warning(
- f"Currently installed `aqlm` version ({importlib.metadata.version('aqlm')}) doesn't support training. If you wish to train a quantized model, please update `aqlm` with `pip install aqlm>=1.0.2`"
- )
- return False
- def is_serializable(self, safe_serialization=None):
- return True
|