| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import TYPE_CHECKING, Dict, List, Union
- from .base import HfQuantizer
- if TYPE_CHECKING:
- from ..modeling_utils import PreTrainedModel
- from ..utils import is_accelerate_available, is_torch_available, logging
- if is_torch_available():
- import torch
- logger = logging.get_logger(__name__)
- class BitNetHfQuantizer(HfQuantizer):
- """
- 1.58-bit quantization from BitNet quantization method:
- Before loading: it converts the linear layers into BitLinear layers during loading.
- Checkout the paper introducing this method : https://arxiv.org/pdf/2402.17764
- """
- requires_parameters_quantization = False
- requires_calibration = True
- required_packages = ["accelerate"]
- def __init__(self, quantization_config, **kwargs):
- super().__init__(quantization_config, **kwargs)
- self.quantization_config = quantization_config
- def validate_environment(self, *args, **kwargs):
- if not is_accelerate_available():
- raise ImportError("Loading a BitNet quantized model requires accelerate (`pip install accelerate`)")
- if kwargs.get("from_tf", False) or kwargs.get("from_flax", False):
- raise ValueError(
- "Loading ternary weights from tf/flax is currently not supported, please make"
- " sure the weights are in PyTorch format."
- )
- if not torch.cuda.is_available():
- logger.warning_once(
- "You don't have a GPU available to load the model, the inference will be slow because of weight unpacking"
- )
- return
- device_map = kwargs.get("device_map", None)
- if device_map is None:
- logger.warning_once(
- "You have loaded a BitNet model on CPU and have a CUDA device available, make sure to set "
- "your model on a GPU device in order to run your model."
- )
- elif device_map is not None:
- if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()):
- raise ValueError(
- "You are attempting to load a BitNet model with a device_map that contains a CPU or disk device."
- "This is not supported. Please remove the CPU or disk device from the device_map."
- )
- def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
- return model
- def _process_model_before_weight_loading(
- self,
- model: "PreTrainedModel",
- device_map,
- keep_in_fp32_modules: List[str] = [],
- **kwargs,
- ):
- from ..integrations import get_keys_to_not_convert, replace_with_bitnet_linear
- self.modules_to_not_convert = get_keys_to_not_convert(model)
- if self.quantization_config.modules_to_not_convert is not None:
- self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert)
- model = replace_with_bitnet_linear(
- model,
- modules_to_not_convert=self.modules_to_not_convert,
- quantization_config=self.quantization_config,
- pre_quantized=self.pre_quantized,
- )
- def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
- max_memory = {key: val * 0.90 for key, val in max_memory.items()}
- return max_memory
- def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
- target_dtype = torch.int8
- return target_dtype
- def is_serializable(self, safe_serialization=None):
- return True
- @property
- def is_trainable(self) -> bool:
- return False
|