| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357 |
- # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import importlib
- from functools import cached_property
- from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
- from packaging import version
- from .base import HfQuantizer
- from .quantizers_utils import get_module_from_name
- if TYPE_CHECKING:
- from ..modeling_utils import PreTrainedModel
- from ..utils import (
- ACCELERATE_MIN_VERSION,
- is_accelerate_available,
- is_bitsandbytes_available,
- is_torch_available,
- is_torch_xpu_available,
- logging,
- )
- if is_torch_available():
- import torch
- from ..pytorch_utils import Conv1D
- logger = logging.get_logger(__name__)
- class Bnb4BitHfQuantizer(HfQuantizer):
- """
- 4-bit quantization from bitsandbytes.py quantization method:
- before loading: converts transformer layers into Linear4bit during loading: load 16bit weight and pass to the
- layer object after: quantizes individual weights in Linear4bit into 4bit at the first .cuda() call
- saving:
- from state dict, as usual; saves weights and `quant_state` components
- loading:
- need to locate `quant_state` components and pass to Param4bit constructor
- """
- use_keep_in_fp32_modules = True
- requires_parameters_quantization = True
- requires_calibration = False
- required_packages = ["bitsandbytes", "accelerate"]
- def __init__(self, quantization_config, **kwargs):
- super().__init__(quantization_config, **kwargs)
- if self.quantization_config.llm_int8_skip_modules is not None:
- self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
- def validate_environment(self, *args, **kwargs):
- if not is_accelerate_available():
- raise ImportError(
- f"Using `bitsandbytes` 4-bit quantization requires Accelerate: `pip install 'accelerate>={ACCELERATE_MIN_VERSION}'`"
- )
- if not is_bitsandbytes_available():
- raise ImportError(
- "Using `bitsandbytes` 4-bit quantization requires the latest version of bitsandbytes: `pip install -U bitsandbytes`"
- )
- from ..integrations import validate_bnb_backend_availability
- from ..utils import is_bitsandbytes_multi_backend_available
- bnb_multibackend_is_enabled = is_bitsandbytes_multi_backend_available()
- validate_bnb_backend_availability(raise_exception=True)
- if kwargs.get("from_tf", False) or kwargs.get("from_flax", False):
- raise ValueError(
- "Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make"
- " sure the weights are in PyTorch format."
- )
- device_map = kwargs.get("device_map", None)
- if (
- device_map is not None
- and isinstance(device_map, dict)
- and not self.quantization_config.llm_int8_enable_fp32_cpu_offload
- ):
- device_map_without_lm_head = {
- key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert
- }
- if set(device_map.values()) == {"cpu"} and bnb_multibackend_is_enabled:
- pass
- elif "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values():
- raise ValueError(
- "Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the "
- "quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules "
- "in 32-bit, you need to set `llm_int8_enable_fp32_cpu_offload=True` and pass a custom `device_map` to "
- "`from_pretrained`. Check "
- "https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu "
- "for more details. "
- )
- if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.39.0"):
- raise ValueError(
- "You have a version of `bitsandbytes` that is not compatible with 4bit inference and training"
- " make sure you have the latest version of `bitsandbytes` installed"
- )
- def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
- if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.19.0"):
- from accelerate.utils import CustomDtype
- if target_dtype != torch.int8:
- logger.info("target_dtype {target_dtype} is replaced by `CustomDtype.INT4` for 4-bit BnB quantization")
- return CustomDtype.INT4
- else:
- raise ValueError(
- "You are using `device_map='auto'` on a 4bit loaded version of the model. To automatically compute"
- " the appropriate device map, you should upgrade your `accelerate` library,"
- "`pip install --upgrade accelerate` or install it from source to support fp4 auto device map"
- "calculation. You may encounter unexpected behavior, or pass your own device map"
- )
- def check_quantized_param(
- self,
- model: "PreTrainedModel",
- param_value: "torch.Tensor",
- param_name: str,
- state_dict: Dict[str, Any],
- **kwargs,
- ) -> bool:
- import bitsandbytes as bnb
- module, tensor_name = get_module_from_name(model, param_name)
- if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Params4bit):
- # Add here check for loaded components' dtypes once serialization is implemented
- return True
- elif isinstance(module, bnb.nn.Linear4bit) and tensor_name == "bias":
- # bias could be loaded by regular set_module_tensor_to_device() from accelerate,
- # but it would wrongly use uninitialized weight there.
- return True
- else:
- return False
- def create_quantized_param(
- self,
- model: "PreTrainedModel",
- param_value: "torch.Tensor",
- param_name: str,
- target_device: "torch.device",
- state_dict: Dict[str, Any],
- unexpected_keys: Optional[List[str]] = None,
- ):
- """
- combines logic from _load_state_dict_into_meta_model and .integrations.bitsandbytes.py::set_module_quantized_tensor_to_device()
- """
- import bitsandbytes as bnb
- module, tensor_name = get_module_from_name(model, param_name)
- if tensor_name not in module._parameters:
- raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
- old_value = getattr(module, tensor_name)
- if tensor_name == "bias":
- if param_value is None:
- new_value = old_value.to(target_device)
- else:
- new_value = param_value.to(target_device)
- new_value = torch.nn.Parameter(new_value, requires_grad=old_value.requires_grad)
- module._parameters[tensor_name] = new_value
- return
- if not isinstance(module._parameters[tensor_name], bnb.nn.Params4bit):
- raise ValueError("this function only loads `Linear4bit components`")
- if (
- old_value.device == torch.device("meta")
- and target_device not in ["meta", torch.device("meta")]
- and param_value is None
- ):
- raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.")
- # construct `new_value` for the module._parameters[tensor_name]:
- if self.pre_quantized:
- # 4bit loading. Collecting components for restoring quantized weight
- # This can be expanded to make a universal call for any quantized weight loading
- if not self.is_serializable:
- raise ValueError(
- "Detected int4 weights but the version of bitsandbytes is not compatible with int4 serialization. "
- "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`."
- )
- if (param_name + ".quant_state.bitsandbytes__fp4" not in state_dict) and (
- param_name + ".quant_state.bitsandbytes__nf4" not in state_dict
- ):
- raise ValueError(
- f"Supplied state dict for {param_name} does not contain `bitsandbytes__*` and possibly other `quantized_stats` components."
- )
- quantized_stats = {}
- for k, v in state_dict.items():
- if param_name + "." in k:
- quantized_stats[k] = v
- if unexpected_keys is not None and k in unexpected_keys:
- unexpected_keys.remove(k)
- param_kwargs = {}
- if self.is_bnb_supports_quant_storage_module:
- param_kwargs["module"] = module
- new_value = bnb.nn.Params4bit.from_prequantized(
- data=param_value,
- quantized_stats=quantized_stats,
- requires_grad=False,
- device=target_device,
- **param_kwargs,
- )
- else:
- new_value = param_value.to("cpu")
- # Support models using `Conv1D` in place of `nn.Linear` (e.g. openai-community/gpt2) by transposing the weight matrix prior to quantization.
- # Since weights are saved in the correct "orientation", we skip transposing when loading.
- if issubclass(module.source_cls, Conv1D):
- new_value = new_value.T
- kwargs = old_value.__dict__
- new_value = bnb.nn.Params4bit(new_value, requires_grad=False, **kwargs).to(target_device)
- module._parameters[tensor_name] = new_value
- # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.adjust_max_memory
- def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
- # need more space for buffers that are created during quantization
- max_memory = {key: val * 0.90 for key, val in max_memory.items()}
- return max_memory
- # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.update_torch_dtype
- def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
- if torch_dtype is None:
- # We force the `dtype` to be float16, this is a requirement from `bitsandbytes`
- logger.info(
- "Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to "
- "requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. "
- "Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
- " torch_dtype=torch.float16 to remove this warning.",
- torch_dtype,
- )
- torch_dtype = torch.float16
- return torch_dtype
- # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.update_device_map
- def update_device_map(self, device_map):
- if device_map is None:
- if torch.cuda.is_available():
- device_map = {"": torch.cuda.current_device()}
- elif is_torch_xpu_available():
- device_map = {"": f"xpu:{torch.xpu.current_device()}"}
- else:
- device_map = {"": "cpu"}
- logger.info(
- "The device_map was not initialized. "
- f"Setting device_map to {device_map}. "
- "If you want to use the model for inference, please set device_map ='auto' "
- )
- return device_map
- # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer._process_model_before_weight_loading
- def _process_model_before_weight_loading(
- self,
- model: "PreTrainedModel",
- device_map,
- keep_in_fp32_modules: List[str] = [],
- **kwargs,
- ):
- from ..integrations import get_keys_to_not_convert, replace_with_bnb_linear
- llm_int8_enable_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload
- # We keep some modules such as the lm_head in their original dtype for numerical stability reasons
- if self.quantization_config.llm_int8_skip_modules is None:
- self.modules_to_not_convert = get_keys_to_not_convert(model)
- else:
- self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
- if not isinstance(self.modules_to_not_convert, list):
- self.modules_to_not_convert = [self.modules_to_not_convert]
- self.modules_to_not_convert.extend(keep_in_fp32_modules)
- # Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk`
- if isinstance(device_map, dict) and len(device_map.keys()) > 1:
- keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]
- if len(keys_on_cpu) > 0 and not llm_int8_enable_fp32_cpu_offload:
- raise ValueError(
- "If you want to offload some keys to `cpu` or `disk`, you need to set "
- "`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be "
- " converted to 8-bit but kept in 32-bit."
- )
- self.modules_to_not_convert.extend(keys_on_cpu)
- model = replace_with_bnb_linear(
- model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config
- )
- # TODO: consider bringing replace_with_bnb_linear() code from ..integrations/bitsandbyter.py to here
- model.config.quantization_config = self.quantization_config
- # Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer._process_model_after_weight_loading with 8bit->4bit
- def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
- model.is_loaded_in_4bit = True
- model.is_4bit_serializable = self.is_serializable()
- return model
- def is_serializable(self, safe_serialization=None):
- _is_4bit_serializable = version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.41.3")
- if not _is_4bit_serializable:
- logger.warning(
- "You are calling `save_pretrained` to a 4-bit converted model, but your `bitsandbytes` version doesn't support it. "
- "If you want to save 4-bit models, make sure to have `bitsandbytes>=0.41.3` installed."
- )
- return False
- return True
- @cached_property
- def is_bnb_supports_quant_storage_module(self) -> bool:
- """
- determines if the current version of bitsandbytes supports
- the `module` parameter in `Params4bit.from_prequantized`
- :return:
- """
- return version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.43.3")
- @property
- def is_trainable(self) -> bool:
- return True
- def _dequantize(self, model):
- from ..integrations import dequantize_and_replace
- model = dequantize_and_replace(
- model, self.modules_to_not_convert, quantization_config=self.quantization_config
- )
- return model
|