| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from ..utils import is_compressed_tensors_available, is_torch_available, logging
- from ..utils.quantization_config import QuantizationConfigMixin
- from .base import HfQuantizer
- if is_torch_available():
- import torch
- logger = logging.get_logger(__name__)
- class CompressedTensorsHfQuantizer(HfQuantizer):
- """
- Quantizer for the compressed_tensors package. Loads and restores models to
- quantized state with compressed_tensors
- """
- requires_calibration = True
- required_packages = ["compressed_tensors"]
- def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs):
- super().__init__(quantization_config, **kwargs)
- from compressed_tensors.compressors import ModelCompressor
- self.compressor = ModelCompressor.from_compression_config(quantization_config)
- def validate_environment(self, *args, **kwargs):
- if not is_compressed_tensors_available():
- raise ImportError(
- "Using `compressed_tensors` quantized models requires the compressed-tensors library: "
- "`pip install compressed-tensors`"
- )
- if not is_torch_available():
- # torch already should be installed as part of compressed tensors
- raise ImportError("torch is required for using compressed-tensors quantization")
- def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
- if torch_dtype is None:
- logger.info("Loading model using torch.float16 for compressed-tensors quantization")
- torch_dtype = torch.float16
- elif torch_dtype != torch.float16:
- logger.info(
- "We suggest you to set `torch_dtype=torch.float16` for better efficiency with compressed_tensors."
- )
- return torch_dtype
- def _process_model_before_weight_loading(self, model, **kwargs):
- from compressed_tensors.quantization import apply_quantization_config
- ct_quantization_config = self.compressor.quantization_config
- apply_quantization_config(model, ct_quantization_config, run_compressed=True)
- def _process_model_after_weight_loading(self, model, **kwargs):
- pass
- @property
- def is_trainable(self):
- return False
- def is_serializable(self, safe_serialization=None):
- return False
|