| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204 |
- # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import importlib
- from typing import TYPE_CHECKING, Any, Dict, List, Optional
- from packaging import version
- from .base import HfQuantizer
- if TYPE_CHECKING:
- from ..modeling_utils import PreTrainedModel
- from ..utils import is_accelerate_available, is_fbgemm_gpu_available, is_torch_available, logging
- from .quantizers_utils import get_module_from_name
- if is_torch_available():
- import torch
- logger = logging.get_logger(__name__)
- class FbgemmFp8HfQuantizer(HfQuantizer):
- """
- FP8 quantization using fbgemm kernels
- """
- requires_parameters_quantization = True
- requires_calibration = False
- required_packages = ["fbgemm-gpu", "accelerate"]
- def __init__(self, quantization_config, **kwargs):
- super().__init__(quantization_config, **kwargs)
- self.quantization_config = quantization_config
- def validate_environment(self, *args, **kwargs):
- if not is_torch_available() or version.parse(importlib.metadata.version("torch")) < version.parse("2.1.0"):
- raise ImportError(
- "Using fbgemm fp8 quantization requires torch > 2.1.0"
- "Please install the latest version of torch ( pip install --upgrade torch )"
- )
- if not is_fbgemm_gpu_available():
- raise ImportError(
- "Using fbgemm fp8 quantization requires fbgemm-gpu library"
- "Please install the latest version of fbgemm-gpu library by following : https://pytorch.org/FBGEMM/fbgemm_gpu-development/InstallationInstructions.html#fbgemm-gpu-install-libraries"
- )
- if not is_accelerate_available("0.32.2"):
- raise ImportError(
- "Loading an FP8 quantized model requires accelerate > 0.32.1 (`pip install --upgrade accelerate`)"
- )
- if not torch.cuda.is_available():
- raise RuntimeError("Using FP8 quantized models with fbgemm kernels requires a GPU")
- compute_capability = torch.cuda.get_device_capability()
- major, minor = compute_capability
- if major < 9:
- raise ValueError(
- "FP8 quantized models is only supported on GPUs with compute capability >= 9.0 (e.g H100)"
- )
- device_map = kwargs.get("device_map", None)
- if device_map is None:
- logger.warning_once(
- "You have loaded an FP8 model on CPU and have a CUDA device available, make sure to set "
- "your model on a GPU device in order to run your model. To remove this warning, pass device_map = 'cuda'. "
- )
- elif device_map is not None:
- if (
- not self.pre_quantized
- and isinstance(device_map, dict)
- and ("cpu" in device_map.values() or "disk" in device_map.values())
- ):
- raise ValueError(
- "You are attempting to load an FP8 model with a device_map that contains a CPU or disk device."
- "This is not supported when the model is quantized on the fly. "
- "Please use a quantized checkpoint or remove the CPU or disk device from the device_map."
- )
- def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
- if torch_dtype is None:
- torch_dtype = torch.bfloat16
- logger.info(
- "Overriding torch_dtype=%s with `torch_dtype=torch.bloat16` due to "
- "requirements of `fbgemm-gpu` to enable model loading in fp8. "
- "Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
- " torch_dtype=torch.bfloat16 to remove this warning.",
- torch_dtype,
- )
- elif torch_dtype == torch.float16:
- raise ValueError(
- "You cannot use FP8 with torch_dtype=torch.float16."
- "We recommend you passing torch_dtype=torch.bfloat16"
- )
- return torch_dtype
- def check_quantized_param(
- self,
- model: "PreTrainedModel",
- param_value: "torch.Tensor",
- param_name: str,
- state_dict: Dict[str, Any],
- **kwargs,
- ):
- from ..integrations import FbgemmFp8Linear
- module, tensor_name = get_module_from_name(model, param_name)
- if isinstance(module, FbgemmFp8Linear):
- if self.pre_quantized or tensor_name == "bias":
- if tensor_name == "weight" and param_value.dtype != torch.float8_e4m3fn:
- raise ValueError("Expect quantized weights but got an unquantized weight")
- return False
- else:
- if tensor_name == "weight_scale":
- raise ValueError("Expect unquantized weights but got a quantized weight_scale")
- return True
- return False
- def create_quantized_param(
- self,
- model: "PreTrainedModel",
- param_value: "torch.Tensor",
- param_name: str,
- target_device: "torch.device",
- state_dict: Dict[str, Any],
- unexpected_keys: Optional[List[str]] = None,
- ):
- """
- Quantizes weights into weight and weight_scale
- """
- new_value, weight_scale = torch.ops.fbgemm.quantize_fp8_per_row(param_value)
- module, tensor_name = get_module_from_name(model, param_name)
- module._buffers[tensor_name] = new_value.to(target_device)
- # to have the right output shape -> (out_features, 1)
- module._buffers["weight_scale"] = weight_scale.view(weight_scale.shape[0], 1).to(target_device)
- if unexpected_keys is not None and param_name in unexpected_keys:
- unexpected_keys.remove(param_name)
- del param_name
- def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
- return model
- def _process_model_before_weight_loading(
- self,
- model: "PreTrainedModel",
- device_map,
- keep_in_fp32_modules: List[str] = [],
- **kwargs,
- ):
- from ..integrations import get_keys_to_not_convert, replace_with_fbgemm_fp8_linear
- self.modules_to_not_convert = get_keys_to_not_convert(model)
- if self.quantization_config.modules_to_not_convert is not None:
- self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert)
- model = replace_with_fbgemm_fp8_linear(
- model,
- modules_to_not_convert=self.modules_to_not_convert,
- quantization_config=self.quantization_config,
- pre_quantized=self.pre_quantized,
- )
- model.config.quantization_config = self.quantization_config
- def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]:
- from ..integrations import FbgemmFp8Linear
- not_missing_keys = []
- for name, module in model.named_modules():
- if isinstance(module, FbgemmFp8Linear):
- for missing in missing_keys:
- if (
- (name in missing or name in f"{prefix}.{missing}")
- and not missing.endswith(".weight")
- and not missing.endswith(".bias")
- ):
- not_missing_keys.append(missing)
- return [k for k in missing_keys if k not in not_missing_keys]
- def is_serializable(self, safe_serialization=None):
- return True
- @property
- def is_trainable(self) -> bool:
- return False
|