| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296 |
- # Copyright 2024 The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import TYPE_CHECKING, Any, Dict, List
- from ..integrations import prepare_for_hqq_linear
- from ..utils import is_accelerate_available, is_hqq_available, is_torch_available, logging
- from .base import HfQuantizer
- from .quantizers_utils import get_module_from_name
- if TYPE_CHECKING:
- from ..modeling_utils import PreTrainedModel
- if is_accelerate_available():
- from accelerate.hooks import remove_hook_from_module
- if is_torch_available():
- import torch
- logger = logging.get_logger(__name__)
- # Finds the parent of a node module named "name"
- def find_parent(model, name):
- module_tree = name.split(".")[:-1]
- parent = model
- for m in module_tree:
- parent = parent._modules[m]
- return parent
- class HqqHfQuantizer(HfQuantizer):
- """
- HQQ quantizer base HF class.
- nn.Linear modules are first tagged with quant_config in _process_model_before_weight_loading().
- The actual quantization and offloading to the GPU is done in check_quantized_param().
- """
- use_keep_in_fp32_modules = False
- requires_parameters_quantization = True
- requires_calibration = False
- required_packages = ["hqq"]
- def __init__(self, quantization_config, **kwargs):
- super().__init__(quantization_config, **kwargs)
- self.torch_dtype = None
- self.using_multi_gpu = False
- def validate_environment(self, *args, **kwargs):
- if not (is_hqq_available()):
- raise ImportError(
- "A valid HQQ version (>=0.2.1) is not available. Please follow the instructions to install it: `https://github.com/mobiusml/hqq/`."
- )
- if kwargs.get("from_tf", False) or kwargs.get("from_flax", False):
- raise ValueError(
- "Converting weights from tf/flax weights is currently not supported, please make"
- " sure the weights are in PyTorch format."
- )
- if not torch.cuda.is_available():
- raise RuntimeError("No GPU found. A GPU is needed for quantization.")
- if self.torch_dtype is None:
- if "torch_dtype" in kwargs:
- self.torch_dtype = kwargs["torch_dtype"]
- else:
- self.torch_dtype = torch.float32
- logger.info("Setting torch_dtype to torch.float32 as the default value since it was not specified.")
- device_map = kwargs.get("device_map", None)
- if isinstance(device_map, dict):
- if "cpu" in device_map.values() or "disk" in device_map.values():
- raise ValueError(
- "You are attempting to use an HQQ model with a device_map that contains a CPU or disk device."
- " This is not supported. Please remove the CPU or disk device from the device_map."
- )
- else:
- self.using_multi_gpu = len(set(device_map.values())) > 1
- def update_missing_keys(
- self, model: "PreTrainedModel", missing_keys: List[str], prefix: str, **kwargs
- ) -> List[str]:
- if self.pre_quantized:
- return [key for key in missing_keys if ("weight" not in key)]
- else:
- return missing_keys
- # Adds missing keys for HQQLinear modules that are loaded but the model with initialized with torch.nn.Linear
- def update_expected_keys(
- self, model: "PreTrainedModel", expected_keys: List[str], loaded_keys: List[str]
- ) -> List[str]:
- if not self.pre_quantized:
- return expected_keys
- # Collects all quantizable (linear) layers
- def _find_hqq_quantizable_layers(model, layers):
- for name, module in model.named_children():
- if isinstance(module, (torch.nn.Linear)):
- layers.add(module.name)
- _find_hqq_quantizable_layers(module, layers)
- new_keys = set(expected_keys)
- if is_hqq_available():
- from hqq.core.quantize import HQQLinear
- # Name modules
- for name, module in model.named_modules():
- module.name = name
- # valid modules are Linear layers that have HQQLinear state_dict. We ignore skip_modules and any layers with Linear state_dict() params
- _valid_modules = set()
- _find_hqq_quantizable_layers(model, _valid_modules)
- _valid_modules -= set(model.config.quantization_config["skip_modules"])
- # Append new expected layers based on _ref_keys
- _ref_keys = HQQLinear(
- linear_layer=None, quant_config=None, compute_dtype=torch.float16, device="cpu"
- ).state_dict_keys() - {"bias"}
- # Clean-up
- _rm_keys = set()
- for key in new_keys:
- if any(_module in key for _module in _valid_modules):
- _rm_keys.add(key)
- new_keys -= _rm_keys
- # At this point, new_keys contains all the keys of the layers that are NOT HQQLinear or torch.nn.Linear
- # Re-populate Linear/HQQLinear
- for _module in _valid_modules:
- if _module + ".weight" in loaded_keys:
- new_keys.add(_module + ".weight")
- else:
- new_keys.update({_module + "." + _ref_key for _ref_key in _ref_keys})
- if _module + ".bias" in loaded_keys:
- new_keys.add(_module + ".bias")
- return list(new_keys)
- def check_quantized_param(
- self,
- model: "PreTrainedModel",
- param_value: "torch.Tensor",
- param_name: str,
- state_dict: Dict[str, Any],
- **kwargs,
- ) -> bool:
- if is_hqq_available():
- from hqq.core.quantize import HQQLinear
- module, tensor_name = get_module_from_name(model, param_name)
- if self.pre_quantized:
- return (
- (isinstance(module, torch.nn.Linear) or isinstance(module, HQQLinear))
- and tensor_name != "weight"
- and tensor_name != "bias"
- )
- else:
- return isinstance(module, torch.nn.Linear) and tensor_name == "weight"
- def create_quantized_param(
- self,
- model: "PreTrainedModel",
- param_value: "torch.Tensor",
- param_name: str,
- target_device: "torch.device",
- state_dict: Dict[str, Any],
- unexpected_keys: List[str],
- ):
- """
- Each nn.Linear layer is processsed here.
- We first check if the corresponding module state_dict contains already HQQ quantized parameters.
- If not, we create a temp linear layer with the module state_dict params and use it for quantization
- """
- if is_hqq_available():
- from hqq.core.quantize import HQQLinear
- module, tensor_name = get_module_from_name(model, param_name)
- layer_name = ".".join(param_name.split(".")[:-1])
- parent_module = find_parent(model, layer_name)
- node = layer_name.split(".")[-1]
- # set module state_dict
- module_state_dict = {}
- for k, v in state_dict.items():
- if layer_name + "." in k:
- module_state_dict[k.split(".")[-1]] = v
- if unexpected_keys is not None and k in unexpected_keys:
- unexpected_keys.remove(k)
- if self.pre_quantized:
- if isinstance(module, HQQLinear):
- return
- else:
- hqq_layer = HQQLinear(
- linear_layer=None,
- quant_config=None,
- compute_dtype=self.torch_dtype,
- device=target_device,
- )
- hqq_layer.load_state_dict(module_state_dict)
- if hqq_layer.bias is not None and isinstance(hqq_layer.bias, torch.Tensor):
- hqq_layer.bias = torch.nn.Parameter(hqq_layer.bias)
- if self.using_multi_gpu:
- hqq_layer = self._patch_layer_for_multigpu(hqq_layer)
- setattr(parent_module, node, hqq_layer)
- # cleanup
- del module.__dict__, module
- torch.cuda.empty_cache()
- return
- # Step 1: populate module with weight/bias from module state dict
- for key in module_state_dict:
- setattr(module, key, torch.nn.Parameter(module_state_dict[key]))
- # Step 2: Replace module with either HQQLinear or move it to device. We do this via setattr on the parent as doing on it on the module
- # directly doesn't work.
- if hasattr(module, "quant_config"):
- hqq_layer = HQQLinear(
- module,
- module.quant_config,
- compute_dtype=self.torch_dtype,
- device=target_device,
- del_orig=True,
- )
- if hqq_layer.bias is not None and isinstance(hqq_layer.bias, torch.Tensor):
- hqq_layer.bias = torch.nn.Parameter(hqq_layer.bias)
- if self.using_multi_gpu:
- hqq_layer = self._patch_layer_for_multigpu(hqq_layer)
- setattr(parent_module, node, hqq_layer)
- else:
- module = module.to(dtype=self.torch_dtype, device=target_device)
- setattr(parent_module, node, module)
- torch.cuda.empty_cache()
- # Remove accelerate hook and uses a simpler forward pass. Otherwise, this breaks with multi-gpu
- def _patch_layer_for_multigpu(self, hqq_layer):
- hqq_layer = remove_hook_from_module(hqq_layer)
- def forward_with_device(self, x):
- out = torch.matmul(x.to(self.device), self.dequantize().t())
- if self.bias is not None:
- out += self.bias
- return out
- hqq_layer.forward = lambda x: forward_with_device(hqq_layer, x)
- return hqq_layer
- def _process_model_before_weight_loading(
- self,
- model: "PreTrainedModel",
- device_map,
- keep_in_fp32_modules: List[str] = None,
- **kwargs,
- ):
- keep_in_fp32_modules = keep_in_fp32_modules if keep_in_fp32_modules is not None else []
- # Add the corresponding quant_config to each valid module. This allows us to do the actual nn.Linear -> HQQLinear conversion in create_quantized_param().
- # prepare_for_hqq_linear() also sets the right quantization config inside the model (model.config.quantization_config) and the layers (hqq_layer.quant_config)
- model = prepare_for_hqq_linear(model, quantization_config=self.quantization_config)
- def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
- model.is_hqq_quantized = True
- model.is_hqq_serializable = self.is_serializable()
- return model
- def is_serializable(self, safe_serialization=None):
- return True
- @property
- def is_trainable(self) -> bool:
- return True
|