| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397 |
- # coding=utf-8
- # Copyright 2020-present the HuggingFace Inc. team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Torch utilities for the Trainer class.
- """
- import copy
- import datetime
- import io
- import json
- import math
- import os
- import sys
- import warnings
- from collections.abc import Mapping
- from contextlib import contextmanager
- from dataclasses import dataclass, field
- from itertools import chain
- from logging import StreamHandler
- from typing import Any, Dict, Iterator, List, Optional, Union
- import numpy as np
- import torch
- import torch.distributed as dist
- from torch import nn
- from torch.utils.data import Dataset, IterableDataset, RandomSampler, Sampler
- from torch.utils.data.distributed import DistributedSampler
- from .integrations.deepspeed import is_deepspeed_zero3_enabled
- from .tokenization_utils_base import BatchEncoding
- from .utils import (
- is_sagemaker_mp_enabled,
- is_torch_available,
- is_torch_xla_available,
- is_training_run_on_sagemaker,
- logging,
- )
- if is_training_run_on_sagemaker():
- logging.add_handler(StreamHandler(sys.stdout))
- if is_torch_xla_available():
- import torch_xla.core.xla_model as xm
- if is_torch_available():
- from .pytorch_utils import is_torch_greater_or_equal_than_2_0
- if is_torch_greater_or_equal_than_2_0:
- from torch.optim.lr_scheduler import LRScheduler
- else:
- from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
- logger = logging.get_logger(__name__)
- def get_dataloader_sampler(dataloader):
- if hasattr(dataloader, "batch_sampler") and dataloader.batch_sampler is not None:
- return get_dataloader_sampler(dataloader.batch_sampler)
- elif hasattr(dataloader, "sampler"):
- return dataloader.sampler
- def atleast_1d(tensor_or_array: Union[torch.Tensor, np.ndarray]):
- if isinstance(tensor_or_array, torch.Tensor):
- if hasattr(torch, "atleast_1d"):
- tensor_or_array = torch.atleast_1d(tensor_or_array)
- elif tensor_or_array.ndim < 1:
- tensor_or_array = tensor_or_array[None]
- else:
- tensor_or_array = np.atleast_1d(tensor_or_array)
- return tensor_or_array
- def torch_pad_and_concatenate(tensor1, tensor2, padding_index=-100):
- """Concatenates `tensor1` and `tensor2` on first axis, applying padding on the second if necessary."""
- tensor1 = atleast_1d(tensor1)
- tensor2 = atleast_1d(tensor2)
- if len(tensor1.shape) == 1 or tensor1.shape[1] == tensor2.shape[1]:
- return torch.cat((tensor1, tensor2), dim=0)
- # Let's figure out the new shape
- new_shape = (tensor1.shape[0] + tensor2.shape[0], max(tensor1.shape[1], tensor2.shape[1])) + tensor1.shape[2:]
- # Now let's fill the result tensor
- result = tensor1.new_full(new_shape, padding_index)
- result[: tensor1.shape[0], : tensor1.shape[1]] = tensor1
- result[tensor1.shape[0] :, : tensor2.shape[1]] = tensor2
- return result
- def numpy_pad_and_concatenate(array1, array2, padding_index=-100):
- """Concatenates `array1` and `array2` on first axis, applying padding on the second if necessary."""
- array1 = atleast_1d(array1)
- array2 = atleast_1d(array2)
- if len(array1.shape) == 1 or array1.shape[1] == array2.shape[1]:
- return np.concatenate((array1, array2), axis=0)
- # Let's figure out the new shape
- new_shape = (array1.shape[0] + array2.shape[0], max(array1.shape[1], array2.shape[1])) + array1.shape[2:]
- # Now let's fill the result tensor
- result = np.full_like(array1, padding_index, shape=new_shape)
- result[: array1.shape[0], : array1.shape[1]] = array1
- result[array1.shape[0] :, : array2.shape[1]] = array2
- return result
- def nested_concat(tensors, new_tensors, padding_index=-100):
- """
- Concat the `new_tensors` to `tensors` on the first dim and pad them on the second if needed. Works for tensors or
- nested list/tuples/dict of tensors.
- """
- if not (isinstance(tensors, torch.Tensor) and isinstance(new_tensors, torch.Tensor)):
- assert (
- type(tensors) is type(new_tensors)
- ), f"Expected `tensors` and `new_tensors` to have the same type but found {type(tensors)} and {type(new_tensors)}."
- if isinstance(tensors, (list, tuple)):
- return type(tensors)(nested_concat(t, n, padding_index=padding_index) for t, n in zip(tensors, new_tensors))
- elif isinstance(tensors, torch.Tensor):
- return torch_pad_and_concatenate(tensors, new_tensors, padding_index=padding_index)
- elif isinstance(tensors, Mapping):
- return type(tensors)(
- {k: nested_concat(t, new_tensors[k], padding_index=padding_index) for k, t in tensors.items()}
- )
- elif isinstance(tensors, np.ndarray):
- return numpy_pad_and_concatenate(tensors, new_tensors, padding_index=padding_index)
- else:
- raise TypeError(f"Unsupported type for concatenation: got {type(tensors)}")
- def find_batch_size(tensors):
- """
- Find the first dimension of a tensor in a nested list/tuple/dict of tensors.
- """
- if isinstance(tensors, (list, tuple)):
- for t in tensors:
- result = find_batch_size(t)
- if result is not None:
- return result
- elif isinstance(tensors, Mapping):
- for key, value in tensors.items():
- result = find_batch_size(value)
- if result is not None:
- return result
- elif isinstance(tensors, torch.Tensor):
- return tensors.shape[0] if len(tensors.shape) >= 1 else None
- elif isinstance(tensors, np.ndarray):
- return tensors.shape[0] if len(tensors.shape) >= 1 else None
- def nested_numpify(tensors):
- "Numpify `tensors` (even if it's a nested list/tuple/dict of tensors)."
- if isinstance(tensors, (list, tuple)):
- return type(tensors)(nested_numpify(t) for t in tensors)
- if isinstance(tensors, Mapping):
- return type(tensors)({k: nested_numpify(t) for k, t in tensors.items()})
- t = tensors.cpu()
- if t.dtype == torch.bfloat16:
- # As of Numpy 1.21.4, NumPy does not support bfloat16 (see
- # https://github.com/numpy/numpy/blob/a47ecdea856986cd60eabbd53265c2ca5916ad5d/doc/source/user/basics.types.rst ).
- # Until Numpy adds bfloat16, we must convert float32.
- t = t.to(torch.float32)
- return t.numpy()
- def nested_detach(tensors):
- "Detach `tensors` (even if it's a nested list/tuple/dict of tensors)."
- if isinstance(tensors, (list, tuple)):
- return type(tensors)(nested_detach(t) for t in tensors)
- elif isinstance(tensors, Mapping):
- return type(tensors)({k: nested_detach(t) for k, t in tensors.items()})
- return tensors.detach() if isinstance(tensors, torch.Tensor) else tensors
- def nested_xla_mesh_reduce(tensors, name):
- if is_torch_xla_available():
- import torch_xla.core.xla_model as xm
- if isinstance(tensors, (list, tuple)):
- return type(tensors)(nested_xla_mesh_reduce(t, f"{name}_{i}") for i, t in enumerate(tensors))
- if isinstance(tensors, Mapping):
- return type(tensors)(
- {k: nested_xla_mesh_reduce(t, f"{name}_{i}") for i, (k, t) in enumerate(tensors.items())}
- )
- tensors = atleast_1d(tensors)
- return xm.mesh_reduce(name, tensors, torch.cat)
- else:
- raise ImportError("Torch xla must be installed to use `nested_xla_mesh_reduce`")
- def distributed_concat(tensor: Any, num_total_examples: Optional[int] = None) -> Any:
- try:
- if isinstance(tensor, (tuple, list)):
- return type(tensor)(distributed_concat(t, num_total_examples) for t in tensor)
- if isinstance(tensor, Mapping):
- return type(tensor)({k: distributed_concat(t, num_total_examples) for k, t in tensor.items()})
- tensor = atleast_1d(tensor).contiguous()
- output_tensors = [tensor.clone() for _ in range(dist.get_world_size())]
- dist.all_gather(output_tensors, tensor)
- concat = torch.cat(output_tensors, dim=0)
- # truncate the dummy elements added by SequentialDistributedSampler
- if num_total_examples is not None:
- concat = concat[:num_total_examples]
- return concat
- except AssertionError:
- raise AssertionError("Not currently using distributed training")
- def distributed_broadcast_scalars(
- scalars: List[Union[int, float]],
- num_total_examples: Optional[int] = None,
- device: Optional[torch.device] = torch.device("cuda"),
- ) -> torch.Tensor:
- try:
- tensorized_scalar = torch.tensor(scalars).to(device)
- output_tensors = [tensorized_scalar.clone() for _ in range(dist.get_world_size())]
- dist.all_gather(output_tensors, tensorized_scalar)
- concat = torch.cat(output_tensors, dim=0)
- # truncate the dummy elements added by SequentialDistributedSampler
- if num_total_examples is not None:
- concat = concat[:num_total_examples]
- return concat
- except AssertionError:
- raise AssertionError("Not currently using distributed training")
- def reissue_pt_warnings(caught_warnings):
- # Reissue warnings
- if len(caught_warnings) > 1:
- for w in caught_warnings:
- if w.category is not UserWarning:
- warnings.warn(w.message, w.category)
- @contextmanager
- def torch_distributed_zero_first(local_rank: int):
- """
- Decorator to make all processes in distributed training wait for each local_master to do something.
- Args:
- local_rank (`int`): The rank of the local process.
- """
- if local_rank not in [-1, 0]:
- dist.barrier()
- yield
- if local_rank == 0:
- dist.barrier()
- class DistributedSamplerWithLoop(DistributedSampler):
- """
- Like a torch.utils.data.distributed.DistributedSampler` but loops at the end back to the beginning of the shuffled
- samples to make each process have a round multiple of batch_size samples.
- Args:
- dataset (`torch.utils.data.Dataset`):
- Dataset used for sampling.
- batch_size (`int`):
- The batch size used with this sampler
- kwargs (`Dict[str, Any]`, *optional*):
- All other keyword arguments passed to `DistributedSampler`.
- """
- def __init__(self, dataset, batch_size, **kwargs):
- super().__init__(dataset, **kwargs)
- self.batch_size = batch_size
- def __iter__(self):
- indices = list(super().__iter__())
- remainder = 0 if len(indices) % self.batch_size == 0 else self.batch_size - len(indices) % self.batch_size
- # DistributedSampler already added samples from the beginning to make the number of samples a round multiple
- # of the world size, so we skip those.
- start_remainder = 1 if self.rank < len(self.dataset) % self.num_replicas else 0
- indices += indices[start_remainder : start_remainder + remainder]
- return iter(indices)
- class EvalLoopContainer:
- """
- Container to store intermediate results of evaluation loop
- Args:
- do_nested_concat (`bool`, *optional*, defaults to `True`):
- If set to `True`, each iteration will recursively concatenate a new object containing tensors to
- the existing stored tensors, provided that the structure of the existing object and the new one
- are identical. If set to `False`, all newly added tensors will be stored in a list.
- padding_index (`int`, *optional*, defaults to -100):
- Value used to pad tensors of different shapes when `do_nested_concat=True`.
- """
- def __init__(self, do_nested_concat: bool = True, padding_index: int = -100):
- self.do_nested_concat = do_nested_concat
- self.padding_index = padding_index
- self.tensors = None
- self.arrays = None
- def add(self, tensors) -> None:
- """Add tensors to the stored objects. If `do_nested_concat=True`, the tensors will be concatenated recursively."""
- if self.tensors is None:
- self.tensors = tensors if self.do_nested_concat else [tensors]
- elif self.do_nested_concat:
- self.tensors = nested_concat(self.tensors, tensors, padding_index=self.padding_index)
- else:
- self.tensors.append(tensors)
- def to_cpu_and_numpy(self) -> None:
- """Move tensors in stored objects to CPU and convert them to numpy arrays."""
- # Check if we have something to add, if not just return
- if self.tensors is None:
- return
- new_arrays = nested_numpify(self.tensors)
- if self.arrays is None:
- self.arrays = new_arrays
- elif self.do_nested_concat:
- self.arrays = nested_concat(self.arrays, new_arrays, padding_index=self.padding_index)
- else:
- self.arrays.extend(new_arrays)
- # reset device tensors after adding to cpu
- self.tensors = None
- def get_arrays(self):
- """Returns the numpified and moved to CPU stored objects."""
- self.to_cpu_and_numpy()
- return self.arrays
- class SequentialDistributedSampler(Sampler):
- """
- Distributed Sampler that subsamples indices sequentially, making it easier to collate all results at the end.
- Even though we only use this sampler for eval and predict (no training), which means that the model params won't
- have to be synced (i.e. will not hang for synchronization even if varied number of forward passes), we still add
- extra samples to the sampler to make it evenly divisible (like in `DistributedSampler`) to make it easy to `gather`
- or `reduce` resulting tensors at the end of the loop.
- """
- def __init__(self, dataset, num_replicas=None, rank=None, batch_size=None):
- warnings.warn(
- "SequentialDistributedSampler is deprecated and will be removed in v5 of Transformers.",
- FutureWarning,
- )
- if num_replicas is None:
- if not dist.is_available():
- raise RuntimeError("Requires distributed package to be available")
- num_replicas = dist.get_world_size()
- if rank is None:
- if not dist.is_available():
- raise RuntimeError("Requires distributed package to be available")
- rank = dist.get_rank()
- self.dataset = dataset
- self.num_replicas = num_replicas
- self.rank = rank
- num_samples = len(self.dataset)
- # Add extra samples to make num_samples a multiple of batch_size if passed
- if batch_size is not None:
- self.num_samples = int(math.ceil(num_samples / (batch_size * num_replicas))) * batch_size
- else:
- self.num_samples = int(math.ceil(num_samples / num_replicas))
- self.total_size = self.num_samples * self.num_replicas
- self.batch_size = batch_size
- def __iter__(self):
- indices = list(range(len(self.dataset)))
- # add extra samples to make it evenly divisible
- indices += indices[: (self.total_size - len(indices))]
- assert (
- len(indices) == self.total_size
- ), f"Indices length {len(indices)} and total size {self.total_size} mismatched"
- # subsample
- indices = indices[self.rank * self.num_samples : (self.rank + 1) * self.num_samples]
- assert (
- len(indices) == self.num_samples
- ), f"Indices length {len(indices)} and sample number {self.num_samples} mismatched"
- return iter(indices)
- def __len__(self):
- return self.num_samples
- def get_tpu_sampler(dataset: torch.utils.data.Dataset, batch_size: int):
- if xm.xrt_world_size() <= 1:
- return RandomSampler(dataset)
- return DistributedSampler(dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal())
- def nested_new_like(arrays, num_samples, padding_index=-100):
- """Create the same nested structure as `arrays` with a first dimension always at `num_samples`."""
- if isinstance(arrays, (list, tuple)):
- return type(arrays)(nested_new_like(x, num_samples) for x in arrays)
- return np.full_like(arrays, padding_index, shape=(num_samples, *arrays.shape[1:]))
- def expand_like(arrays, new_seq_length, padding_index=-100):
- """Expand the `arrays` so that the second dimension grows to `new_seq_length`. Uses `padding_index` for padding."""
- result = np.full_like(arrays, padding_index, shape=(arrays.shape[0], new_seq_length) + arrays.shape[2:])
- result[:, : arrays.shape[1]] = arrays
- return result
- def nested_truncate(tensors, limit):
- "Truncate `tensors` at `limit` (even if it's a nested list/tuple/dict of tensors)."
- if isinstance(tensors, (list, tuple)):
- return type(tensors)(nested_truncate(t, limit) for t in tensors)
- if isinstance(tensors, Mapping):
- return type(tensors)({k: nested_truncate(t, limit) for k, t in tensors.items()})
- return tensors[:limit]
- class DistributedTensorGatherer:
- """
- A class responsible for properly gathering tensors (or nested list/tuple of tensors) on the CPU by chunks.
- If our dataset has 16 samples with a batch size of 2 on 3 processes and we gather then transfer on CPU at every
- step, our sampler will generate the following indices:
- `[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1]`
- to get something of size a multiple of 3 (so that each process gets the same dataset length). Then process 0, 1 and
- 2 will be responsible of making predictions for the following samples:
- - P0: `[0, 1, 2, 3, 4, 5]`
- - P1: `[6, 7, 8, 9, 10, 11]`
- - P2: `[12, 13, 14, 15, 0, 1]`
- The first batch treated on each process will be
- - P0: `[0, 1]`
- - P1: `[6, 7]`
- - P2: `[12, 13]`
- So if we gather at the end of the first batch, we will get a tensor (nested list/tuple of tensor) corresponding to
- the following indices:
- `[0, 1, 6, 7, 12, 13]`
- If we directly concatenate our results without taking any precautions, the user will then get the predictions for
- the indices in this order at the end of the prediction loop:
- `[0, 1, 6, 7, 12, 13, 2, 3, 8, 9, 14, 15, 4, 5, 10, 11, 0, 1]`
- For some reason, that's not going to roll their boat. This class is there to solve that problem.
- Args:
- world_size (`int`):
- The number of processes used in the distributed training.
- num_samples (`int`):
- The number of samples in our dataset.
- make_multiple_of (`int`, *optional*):
- If passed, the class assumes the datasets passed to each process are made to be a multiple of this argument
- (by adding samples).
- padding_index (`int`, *optional*, defaults to -100):
- The padding index to use if the arrays don't all have the same sequence length.
- """
- def __init__(self, world_size, num_samples, make_multiple_of=None, padding_index=-100):
- warnings.warn(
- "DistributedTensorGatherer is deprecated and will be removed in v5 of Transformers.",
- FutureWarning,
- )
- self.world_size = world_size
- self.num_samples = num_samples
- total_size = world_size if make_multiple_of is None else world_size * make_multiple_of
- self.total_samples = int(np.ceil(num_samples / total_size)) * total_size
- self.process_length = self.total_samples // world_size
- self._storage = None
- self._offsets = None
- self.padding_index = padding_index
- def add_arrays(self, arrays):
- """
- Add `arrays` to the internal storage, Will initialize the storage to the full size at the first arrays passed
- so that if we're bound to get an OOM, it happens at the beginning.
- """
- if arrays is None:
- return
- if self._storage is None:
- self._storage = nested_new_like(arrays, self.total_samples, padding_index=self.padding_index)
- self._offsets = list(range(0, self.total_samples, self.process_length))
- slice_len, self._storage = self._nested_set_tensors(self._storage, arrays)
- for i in range(self.world_size):
- self._offsets[i] += slice_len
- def _nested_set_tensors(self, storage, arrays):
- if isinstance(arrays, (list, tuple)):
- result = [self._nested_set_tensors(x, y) for x, y in zip(storage, arrays)]
- return result[0][0], type(arrays)(r[1] for r in result)
- assert (
- arrays.shape[0] % self.world_size == 0
- ), f"Arrays passed should all have a first dimension multiple of {self.world_size}, found {arrays.shape[0]}."
- slice_len = arrays.shape[0] // self.world_size
- for i in range(self.world_size):
- if len(arrays.shape) == 1:
- storage[self._offsets[i] : self._offsets[i] + slice_len] = arrays[i * slice_len : (i + 1) * slice_len]
- else:
- # Expand the array on the fly if needed.
- if len(storage.shape) > 1 and storage.shape[1] < arrays.shape[1]:
- storage = expand_like(storage, arrays.shape[1], padding_index=self.padding_index)
- storage[self._offsets[i] : self._offsets[i] + slice_len, : arrays.shape[1]] = arrays[
- i * slice_len : (i + 1) * slice_len
- ]
- return slice_len, storage
- def finalize(self):
- """
- Return the properly gathered arrays and truncate to the number of samples (since the sampler added some extras
- to get each process a dataset of the same length).
- """
- if self._storage is None:
- return
- if self._offsets[0] != self.process_length:
- logger.warning("Not all data has been set. Are you sure you passed all values?")
- return nested_truncate(self._storage, self.num_samples)
- @dataclass
- class LabelSmoother:
- """
- Adds label-smoothing on a pre-computed output from a Transformers model.
- Args:
- epsilon (`float`, *optional*, defaults to 0.1):
- The label smoothing factor.
- ignore_index (`int`, *optional*, defaults to -100):
- The index in the labels to ignore when computing the loss.
- """
- epsilon: float = 0.1
- ignore_index: int = -100
- def __call__(self, model_output, labels, shift_labels=False):
- logits = model_output["logits"] if isinstance(model_output, dict) else model_output[0]
- if shift_labels:
- logits = logits[..., :-1, :].contiguous()
- labels = labels[..., 1:].contiguous()
- log_probs = -nn.functional.log_softmax(logits, dim=-1)
- if labels.dim() == log_probs.dim() - 1:
- labels = labels.unsqueeze(-1)
- padding_mask = labels.eq(self.ignore_index)
- # In case the ignore_index is -100, the gather will fail, so we replace labels by 0. The padding_mask
- # will ignore them in any case.
- labels = torch.clamp(labels, min=0)
- nll_loss = log_probs.gather(dim=-1, index=labels)
- # works for fp16 input tensor too, by internally upcasting it to fp32
- smoothed_loss = log_probs.sum(dim=-1, keepdim=True, dtype=torch.float32)
- nll_loss.masked_fill_(padding_mask, 0.0)
- smoothed_loss.masked_fill_(padding_mask, 0.0)
- # Take the mean over the label dimensions, then divide by the number of active elements (i.e. not-padded):
- num_active_elements = padding_mask.numel() - padding_mask.long().sum()
- nll_loss = nll_loss.sum() / num_active_elements
- smoothed_loss = smoothed_loss.sum() / (num_active_elements * log_probs.shape[-1])
- return (1 - self.epsilon) * nll_loss + self.epsilon * smoothed_loss
- def get_length_grouped_indices(lengths, batch_size, mega_batch_mult=None, generator=None):
- """
- Return a list of indices so that each slice of `batch_size` consecutive indices correspond to elements of similar
- lengths. To do this, the indices are:
- - randomly permuted
- - grouped in mega-batches of size `mega_batch_mult * batch_size`
- - sorted by length in each mega-batch
- The result is the concatenation of all mega-batches, with the batch of `batch_size` containing the element of
- maximum length placed first, so that an OOM happens sooner rather than later.
- """
- # Default for mega_batch_mult: 50 or the number to get 4 megabatches, whichever is smaller.
- if mega_batch_mult is None:
- mega_batch_mult = min(len(lengths) // (batch_size * 4), 50)
- # Just in case, for tiny datasets
- if mega_batch_mult == 0:
- mega_batch_mult = 1
- # We need to use torch for the random part as a distributed sampler will set the random seed for torch.
- indices = torch.randperm(len(lengths), generator=generator)
- megabatch_size = mega_batch_mult * batch_size
- megabatches = [indices[i : i + megabatch_size].tolist() for i in range(0, len(lengths), megabatch_size)]
- megabatches = [sorted(megabatch, key=lambda i: lengths[i], reverse=True) for megabatch in megabatches]
- # The rest is to get the biggest batch first.
- # Since each megabatch is sorted by descending length, the longest element is the first
- megabatch_maximums = [lengths[megabatch[0]] for megabatch in megabatches]
- max_idx = torch.argmax(torch.tensor(megabatch_maximums)).item()
- # Switch to put the longest element in first position
- megabatches[0][0], megabatches[max_idx][0] = megabatches[max_idx][0], megabatches[0][0]
- return [i for megabatch in megabatches for i in megabatch]
- class LengthGroupedSampler(Sampler):
- r"""
- Sampler that samples indices in a way that groups together features of the dataset of roughly the same length while
- keeping a bit of randomness.
- """
- def __init__(
- self,
- batch_size: int,
- dataset: Optional[Dataset] = None,
- lengths: Optional[List[int]] = None,
- model_input_name: Optional[str] = None,
- generator=None,
- ):
- if dataset is None and lengths is None:
- raise ValueError("One of dataset and lengths must be provided.")
- self.batch_size = batch_size
- if lengths is None:
- model_input_name = model_input_name if model_input_name is not None else "input_ids"
- if (
- not (isinstance(dataset[0], dict) or isinstance(dataset[0], BatchEncoding))
- or model_input_name not in dataset[0]
- ):
- raise ValueError(
- "Can only automatically infer lengths for datasets whose items are dictionaries with an "
- f"'{model_input_name}' key."
- )
- lengths = [len(feature[model_input_name]) for feature in dataset]
- elif isinstance(lengths, torch.Tensor):
- logger.info(
- "If lengths is a torch.Tensor, LengthGroupedSampler will be slow. Converting lengths to List[int]..."
- )
- lengths = lengths.tolist()
- self.lengths = lengths
- self.generator = generator
- def __len__(self):
- return len(self.lengths)
- def __iter__(self):
- indices = get_length_grouped_indices(self.lengths, self.batch_size, generator=self.generator)
- return iter(indices)
- class DistributedLengthGroupedSampler(DistributedSampler):
- r"""
- Distributed Sampler that samples indices in a way that groups together features of the dataset of roughly the same
- length while keeping a bit of randomness.
- """
- # Copied and adapted from PyTorch DistributedSampler.
- def __init__(
- self,
- batch_size: int,
- dataset: Optional[Dataset] = None,
- num_replicas: Optional[int] = None,
- rank: Optional[int] = None,
- seed: int = 0,
- drop_last: bool = False,
- lengths: Optional[List[int]] = None,
- model_input_name: Optional[str] = None,
- ):
- if dataset is None and lengths is None:
- raise ValueError("One of dataset and lengths must be provided.")
- if num_replicas is None:
- if not dist.is_available():
- raise RuntimeError("Requires distributed package to be available")
- num_replicas = dist.get_world_size()
- if rank is None:
- if not dist.is_available():
- raise RuntimeError("Requires distributed package to be available")
- rank = dist.get_rank()
- self.batch_size = batch_size
- self.num_replicas = num_replicas
- self.rank = rank
- self.epoch = 0
- self.drop_last = drop_last
- if lengths is None:
- model_input_name = model_input_name if model_input_name is not None else "input_ids"
- if (
- not (isinstance(dataset[0], dict) or isinstance(dataset[0], BatchEncoding))
- or model_input_name not in dataset[0]
- ):
- raise ValueError(
- "Can only automatically infer lengths for datasets whose items are dictionaries with an "
- f"'{model_input_name}' key."
- )
- lengths = [len(feature[model_input_name]) for feature in dataset]
- elif isinstance(lengths, torch.Tensor):
- logger.info(
- "If lengths is a torch.Tensor, DistributedLengthGroupedSampler will be slow. Converting lengths to"
- " List[int]..."
- )
- lengths = lengths.tolist()
- self.lengths = lengths
- # If the dataset length is evenly divisible by # of replicas, then there
- # is no need to drop any data, since the dataset will be split equally.
- if self.drop_last and len(self.lengths) % self.num_replicas != 0:
- # Split to nearest available length that is evenly divisible.
- # This is to ensure each rank receives the same amount of data when
- # using this Sampler.
- self.num_samples = math.ceil((len(self.lengths) - self.num_replicas) / self.num_replicas)
- else:
- self.num_samples = math.ceil(len(self.lengths) / self.num_replicas)
- self.total_size = self.num_samples * self.num_replicas
- self.seed = seed
- def __iter__(self) -> Iterator:
- # Deterministically shuffle based on epoch and seed
- g = torch.Generator()
- g.manual_seed(self.seed + self.epoch)
- indices = get_length_grouped_indices(self.lengths, self.batch_size, generator=g)
- if not self.drop_last:
- # add extra samples to make it evenly divisible
- indices += indices[: (self.total_size - len(indices))]
- else:
- # remove tail of data to make it evenly divisible.
- indices = indices[: self.total_size]
- assert len(indices) == self.total_size
- # subsample
- indices = indices[self.rank : self.total_size : self.num_replicas]
- assert len(indices) == self.num_samples
- return iter(indices)
- class ShardSampler(Sampler):
- """
- Sampler that shards batches between several processes. Dispatches indices batch by batch: on 2 processes with batch
- size 4, the first two batches are `[0, 1, 2, 3, 4, 5, 6, 7]` and `[8, 9, 10, 11, 12, 13, 14, 15]`, which shard into
- `[0, 1, 2, 3]` and `[8, 9, 10, 11]` for GPU-0 and `[4, 5, 6, 7]` and `[12, 13, 14, 15]` for GPU-1.
- The sampler thus yields `[0, 1, 2, 3, 8, 9, 10, 11]` on GPU-0 and `[4, 5, 6, 7, 12, 13, 14, 15]` on GPU-1.
- """
- def __init__(
- self,
- dataset: Dataset,
- batch_size: int = 1,
- drop_last: bool = False,
- num_processes: int = 1,
- process_index: int = 0,
- ):
- self.dataset = dataset
- self.batch_size = batch_size
- self.drop_last = drop_last
- self.num_processes = num_processes
- self.process_index = process_index
- self.total_batch_size = total_batch_size = batch_size * num_processes
- num_batches = len(dataset) // total_batch_size if drop_last else math.ceil(len(dataset) / total_batch_size)
- self.total_num_samples = num_batches * total_batch_size
- def __iter__(self):
- indices = list(range(len(self.dataset)))
- # Add extra samples to make it evenly divisible. While loop is there in the edge case we have a tiny dataset
- # and it needs to be done several times.
- while len(indices) < self.total_num_samples:
- indices += indices[: (self.total_num_samples - len(indices))]
- result = []
- for batch_start in range(self.batch_size * self.process_index, self.total_num_samples, self.total_batch_size):
- result += indices[batch_start : batch_start + self.batch_size]
- return iter(result)
- def __len__(self):
- # Each shard only sees a fraction of total_num_samples.
- return self.total_num_samples // self.num_processes
- class IterableDatasetShard(IterableDataset):
- """
- Wraps a PyTorch `IterableDataset` to generate samples for one of the processes only. Instances of this class will
- always yield a number of samples that is a round multiple of the actual batch size (which is `batch_size x
- num_processes`). Depending on the value of the `drop_last` attribute, it will either stop the iteration at the
- first batch that would be too small or loop with indices from the beginning.
- On two processes with an iterable dataset yielding of `[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]` with a batch size of
- 2:
- - the shard on process 0 will yield `[0, 1, 4, 5, 8, 9]` so will see batches `[0, 1]`, `[4, 5]`, `[8, 9]`
- - the shard on process 1 will yield `[2, 3, 6, 7, 10, 11]` so will see batches `[2, 3]`, `[6, 7]`, `[10, 11]`
- <Tip warning={true}>
- If your IterableDataset implements some randomization that needs to be applied the same way on all processes
- (for instance, a shuffling), you should use a `torch.Generator` in a `generator` attribute of the `dataset` to
- generate your random numbers and call the [`~trainer_pt_utils.IterableDatasetShard.set_epoch`] method of this
- object. It will set the seed of this `generator` to `seed + epoch` on all processes before starting the
- iteration. Alternatively, you can also implement a `set_epoch()` method in your iterable dataset to deal with
- this.
- </Tip>
- Args:
- dataset (`torch.utils.data.IterableDataset`):
- The batch sampler to split in several shards.
- batch_size (`int`, *optional*, defaults to 1):
- The size of the batches per shard.
- drop_last (`bool`, *optional*, defaults to `False`):
- Whether or not to drop the last incomplete batch or complete the last batches by using the samples from the
- beginning.
- num_processes (`int`, *optional*, defaults to 1):
- The number of processes running concurrently.
- process_index (`int`, *optional*, defaults to 0):
- The index of the current process.
- seed (`int`, *optional*, defaults to 0):
- A random seed that will be used for the random number generation in
- [`~trainer_pt_utils.IterableDatasetShard.set_epoch`].
- """
- def __init__(
- self,
- dataset: IterableDataset,
- batch_size: int = 1,
- drop_last: bool = False,
- num_processes: int = 1,
- process_index: int = 0,
- seed: int = 0,
- ):
- self.dataset = dataset
- self.batch_size = batch_size
- self.drop_last = drop_last
- self.num_processes = num_processes
- self.process_index = process_index
- self.seed = seed
- self.epoch = 0
- self.num_examples = 0
- def set_epoch(self, epoch):
- self.epoch = epoch
- if hasattr(self.dataset, "set_epoch"):
- self.dataset.set_epoch(epoch)
- def __iter__(self):
- self.num_examples = 0
- if (
- not hasattr(self.dataset, "set_epoch")
- and hasattr(self.dataset, "generator")
- and isinstance(self.dataset.generator, torch.Generator)
- ):
- self.dataset.generator.manual_seed(self.seed + self.epoch)
- real_batch_size = self.batch_size * self.num_processes
- process_slice = range(self.process_index * self.batch_size, (self.process_index + 1) * self.batch_size)
- first_batch = None
- current_batch = []
- for element in self.dataset:
- self.num_examples += 1
- current_batch.append(element)
- # Wait to have a full batch before yielding elements.
- if len(current_batch) == real_batch_size:
- for i in process_slice:
- yield current_batch[i]
- if first_batch is None:
- first_batch = current_batch.copy()
- current_batch = []
- # Finished if drop_last is True, otherwise complete the last batch with elements from the beginning.
- if not self.drop_last and len(current_batch) > 0:
- if first_batch is None:
- first_batch = current_batch.copy()
- while len(current_batch) < real_batch_size:
- current_batch += first_batch
- for i in process_slice:
- yield current_batch[i]
- def __len__(self):
- # Will raise an error if the underlying dataset is not sized.
- if self.drop_last:
- return (len(self.dataset) // (self.batch_size * self.num_processes)) * self.batch_size
- else:
- return math.ceil(len(self.dataset) / (self.batch_size * self.num_processes)) * self.batch_size
- # In order to keep `trainer.py` compact and easy to understand, place any secondary PT Trainer
- # helper methods here
- def _get_learning_rate(self):
- if self.is_deepspeed_enabled:
- # with deepspeed's fp16 and dynamic loss scale enabled the optimizer/scheduler steps may
- # not run for the first few dozen steps while loss scale is too large, and thus during
- # that time `get_last_lr` will fail if called during that warm up stage, so work around it:
- try:
- last_lr = self.lr_scheduler.get_last_lr()[0]
- except AssertionError as e:
- if "need to call step" in str(e):
- logger.warning("tried to get lr value before scheduler/optimizer started stepping, returning lr=0")
- last_lr = 0
- else:
- raise
- else:
- if isinstance(self.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
- last_lr = self.optimizer.param_groups[0]["lr"]
- else:
- last_lr = self.lr_scheduler.get_last_lr()[0]
- if torch.is_tensor(last_lr):
- last_lr = last_lr.item()
- return last_lr
- def _secs2timedelta(secs):
- """
- convert seconds to hh:mm:ss.msec, msecs rounded to 2 decimals
- """
- msec = int(abs(secs - int(secs)) * 100)
- return f"{datetime.timedelta(seconds=int(secs))}.{msec:02d}"
- def metrics_format(self, metrics: Dict[str, float]) -> Dict[str, float]:
- """
- Reformat Trainer metrics values to a human-readable format
- Args:
- metrics (`Dict[str, float]`):
- The metrics returned from train/evaluate/predict
- Returns:
- metrics (`Dict[str, float]`): The reformatted metrics
- """
- metrics_copy = metrics.copy()
- for k, v in metrics_copy.items():
- if "_mem_" in k:
- metrics_copy[k] = f"{ v >> 20 }MB"
- elif "_runtime" in k:
- metrics_copy[k] = _secs2timedelta(v)
- elif k == "total_flos":
- metrics_copy[k] = f"{ int(v) >> 30 }GF"
- elif isinstance(metrics_copy[k], float):
- metrics_copy[k] = round(v, 4)
- return metrics_copy
- def log_metrics(self, split, metrics):
- """
- Log metrics in a specially formatted way
- Under distributed environment this is done only for a process with rank 0.
- Args:
- split (`str`):
- Mode/split name: one of `train`, `eval`, `test`
- metrics (`Dict[str, float]`):
- The metrics returned from train/evaluate/predictmetrics: metrics dict
- Notes on memory reports:
- In order to get memory usage report you need to install `psutil`. You can do that with `pip install psutil`.
- Now when this method is run, you will see a report that will include: :
- ```
- init_mem_cpu_alloc_delta = 1301MB
- init_mem_cpu_peaked_delta = 154MB
- init_mem_gpu_alloc_delta = 230MB
- init_mem_gpu_peaked_delta = 0MB
- train_mem_cpu_alloc_delta = 1345MB
- train_mem_cpu_peaked_delta = 0MB
- train_mem_gpu_alloc_delta = 693MB
- train_mem_gpu_peaked_delta = 7MB
- ```
- **Understanding the reports:**
- - the first segment, e.g., `train__`, tells you which stage the metrics are for. Reports starting with `init_`
- will be added to the first stage that gets run. So that if only evaluation is run, the memory usage for the
- `__init__` will be reported along with the `eval_` metrics.
- - the third segment, is either `cpu` or `gpu`, tells you whether it's the general RAM or the gpu0 memory
- metric.
- - `*_alloc_delta` - is the difference in the used/allocated memory counter between the end and the start of the
- stage - it can be negative if a function released more memory than it allocated.
- - `*_peaked_delta` - is any extra memory that was consumed and then freed - relative to the current allocated
- memory counter - it is never negative. When you look at the metrics of any stage you add up `alloc_delta` +
- `peaked_delta` and you know how much memory was needed to complete that stage.
- The reporting happens only for process of rank 0 and gpu 0 (if there is a gpu). Typically this is enough since the
- main process does the bulk of work, but it could be not quite so if model parallel is used and then other GPUs may
- use a different amount of gpu memory. This is also not the same under DataParallel where gpu0 may require much more
- memory than the rest since it stores the gradient and optimizer states for all participating GPUS. Perhaps in the
- future these reports will evolve to measure those too.
- The CPU RAM metric measures RSS (Resident Set Size) includes both the memory which is unique to the process and the
- memory shared with other processes. It is important to note that it does not include swapped out memory, so the
- reports could be imprecise.
- The CPU peak memory is measured using a sampling thread. Due to python's GIL it may miss some of the peak memory if
- that thread didn't get a chance to run when the highest memory was used. Therefore this report can be less than
- reality. Using `tracemalloc` would have reported the exact peak memory, but it doesn't report memory allocations
- outside of python. So if some C++ CUDA extension allocated its own memory it won't be reported. And therefore it
- was dropped in favor of the memory sampling approach, which reads the current process memory usage.
- The GPU allocated and peak memory reporting is done with `torch.cuda.memory_allocated()` and
- `torch.cuda.max_memory_allocated()`. This metric reports only "deltas" for pytorch-specific allocations, as
- `torch.cuda` memory management system doesn't track any memory allocated outside of pytorch. For example, the very
- first cuda call typically loads CUDA kernels, which may take from 0.5 to 2GB of GPU memory.
- Note that this tracker doesn't account for memory allocations outside of [`Trainer`]'s `__init__`, `train`,
- `evaluate` and `predict` calls.
- Because `evaluation` calls may happen during `train`, we can't handle nested invocations because
- `torch.cuda.max_memory_allocated` is a single counter, so if it gets reset by a nested eval call, `train`'s tracker
- will report incorrect info. If this [pytorch issue](https://github.com/pytorch/pytorch/issues/16266) gets resolved
- it will be possible to change this class to be re-entrant. Until then we will only track the outer level of
- `train`, `evaluate` and `predict` methods. Which means that if `eval` is called during `train`, it's the latter
- that will account for its memory usage and that of the former.
- This also means that if any other tool that is used along the [`Trainer`] calls
- `torch.cuda.reset_peak_memory_stats`, the gpu peak memory stats could be invalid. And the [`Trainer`] will disrupt
- the normal behavior of any such tools that rely on calling `torch.cuda.reset_peak_memory_stats` themselves.
- For best performance you may want to consider turning the memory profiling off for production runs.
- """
- if not self.is_world_process_zero():
- return
- print(f"***** {split} metrics *****")
- metrics_formatted = self.metrics_format(metrics)
- k_width = max(len(str(x)) for x in metrics_formatted.keys())
- v_width = max(len(str(x)) for x in metrics_formatted.values())
- for key in sorted(metrics_formatted.keys()):
- print(f" {key: <{k_width}} = {metrics_formatted[key]:>{v_width}}")
- def save_metrics(self, split, metrics, combined=True):
- """
- Save metrics into a json file for that split, e.g. `train_results.json`.
- Under distributed environment this is done only for a process with rank 0.
- Args:
- split (`str`):
- Mode/split name: one of `train`, `eval`, `test`, `all`
- metrics (`Dict[str, float]`):
- The metrics returned from train/evaluate/predict
- combined (`bool`, *optional*, defaults to `True`):
- Creates combined metrics by updating `all_results.json` with metrics of this call
- To understand the metrics please read the docstring of [`~Trainer.log_metrics`]. The only difference is that raw
- unformatted numbers are saved in the current method.
- """
- if not self.is_world_process_zero():
- return
- path = os.path.join(self.args.output_dir, f"{split}_results.json")
- with open(path, "w") as f:
- json.dump(metrics, f, indent=4, sort_keys=True)
- if combined:
- path = os.path.join(self.args.output_dir, "all_results.json")
- if os.path.exists(path):
- with open(path, "r") as f:
- all_metrics = json.load(f)
- else:
- all_metrics = {}
- all_metrics.update(metrics)
- with open(path, "w") as f:
- json.dump(all_metrics, f, indent=4, sort_keys=True)
- def save_state(self):
- """
- Saves the Trainer state, since Trainer.save_model saves only the tokenizer with the model
- Under distributed environment this is done only for a process with rank 0.
- """
- if not self.is_world_process_zero():
- return
- path = os.path.join(self.args.output_dir, "trainer_state.json")
- self.state.save_to_json(path)
- def get_model_param_count(model, trainable_only=False):
- """
- Calculate model's total param count. If trainable_only is True then count only those requiring grads
- """
- if is_deepspeed_zero3_enabled():
- def numel(p):
- return p.ds_numel if hasattr(p, "ds_numel") else p.numel()
- else:
- def numel(p):
- return p.numel()
- return sum(numel(p) for p in model.parameters() if not trainable_only or p.requires_grad)
- def get_parameter_names(model, forbidden_layer_types):
- """
- Returns the names of the model parameters that are not inside a forbidden layer.
- """
- result = []
- for name, child in model.named_children():
- result += [
- f"{name}.{n}"
- for n in get_parameter_names(child, forbidden_layer_types)
- if not isinstance(child, tuple(forbidden_layer_types))
- ]
- # Add model specific parameters (defined with nn.Parameter) since they are not in any child.
- result += list(model._parameters.keys())
- return result
- def get_module_class_from_name(module, name):
- """
- Gets a class from a module by its name.
- Args:
- module (`torch.nn.Module`): The module to get the class from.
- name (`str`): The name of the class.
- """
- modules_children = list(module.children())
- if module.__class__.__name__ == name:
- return module.__class__
- elif len(modules_children) == 0:
- return
- else:
- for child_module in modules_children:
- module_class = get_module_class_from_name(child_module, name)
- if module_class is not None:
- return module_class
- def remove_dummy_checkpoint(is_main_process, output_dir, filenames):
- if is_main_process:
- for filename in filenames:
- file = os.path.join(output_dir, filename)
- if os.path.isfile(file):
- os.remove(file)
- if is_sagemaker_mp_enabled():
- import smdistributed.modelparallel.torch as smp
- @smp.step()
- def smp_forward_backward(model, inputs, gradient_accumulation_steps=1):
- outputs = model(**inputs)
- loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
- loss /= gradient_accumulation_steps
- model.backward(loss)
- return loss
- @smp.step()
- def smp_forward_only(model, inputs):
- return model(**inputs)
- def smp_gather(tensor):
- if isinstance(tensor, (list, tuple)):
- return type(tensor)(smp_gather(t) for t in tensor)
- elif isinstance(tensor, dict):
- return type(tensor)({k: smp_gather(v) for k, v in tensor.items()})
- elif not isinstance(tensor, torch.Tensor):
- raise TypeError(
- f"Can't gather the values of type {type(tensor)}, only of nested list/tuple/dicts of tensors."
- )
- all_tensors = smp.allgather(tensor, smp.CommGroup.DP_GROUP)
- all_tensors = [atleast_1d(t) for t in all_tensors]
- return torch.cat([t.cpu() for t in all_tensors], dim=0)
- def smp_nested_concat(tensor):
- if isinstance(tensor, (list, tuple)):
- return type(tensor)(smp_nested_concat(t) for t in tensor)
- elif isinstance(tensor, dict):
- return type(tensor)({k: smp_nested_concat(v) for k, v in tensor.items()})
- # It doesn't seem possible to check here if `tensor` is a StepOutput because StepOutput lives in `smp.step`
- # which is also the name of the decorator so Python is confused.
- return tensor.concat().detach().cpu()
- @dataclass
- class AcceleratorConfig:
- """
- A subset of arguments relating to the underlying [`accelerate.Accelerator`]
- implementation utilized in the `Trainer` that can be customized.
- Mostly relating to data.
- Parameters:
- split_batches (`bool`, *optional*, defaults to `False`):
- Whether or not the accelerator should split the batches yielded by the dataloaders across the devices. If
- `True` the actual batch size used will be the same on any kind of distributed processes, but it must be a
- round multiple of the `num_processes` you are using. If `False`, actual batch size used will be the one set
- in your script multiplied by the number of processes.
- dispatch_batches (`bool`, *optional*):
- If set to `True`, the dataloader prepared by the Accelerator is only iterated through on the main process
- and then the batches are split and broadcast to each process. Will default to `True` for `DataLoader` whose
- underlying dataset is an `IterableDataset`, `False` otherwise.
- even_batches (`bool`, *optional*, defaults to `True`):
- If set to `True`, in cases where the total batch size across all processes does not exactly divide the
- dataset, samples at the start of the dataset will be duplicated so the batch can be divided equally among
- all workers.
- use_seedable_sampler (`bool`, *optional*, defaults to `True`):
- Whether or not use a fully seedable random sampler ([`accelerate.data_loader.SeedableRandomSampler`]). Ensures
- training results are fully reproducable using a different sampling technique. While seed-to-seed results
- may differ, on average the differences are neglible when using multiple different seeds to compare. Should
- also be ran with [`~utils.set_seed`] for the best results.
- gradient_accumulation_kwargs (`dict`, *optional*):
- Additional kwargs to configure gradient accumulation, see [`accelerate.utils.GradientAccumulationPlugin`].
- Any of the following (optional) keys are acceptable:
- num_steps (`int`): Will take precedence over [`~.TrainingArguments.gradient_accumulation_steps`] if
- the latter is set to 1, otherwise an exception will be raised.
- adjust_scheduler (`bool`): Whether to adjust the scheduler steps to account for [`~.TrainingArguments.gradient_accumulation_steps`].
- The [`accelerate.utils.GradientAccumulationPlugin`] default is `True`.
- sync_each_batch (`bool`): Whether to synchronize the gradients at each data batch.
- The [`accelerate.utils.GradientAccumulationPlugin`] default is `False`.
- non_blocking (`bool`, *optional*, defaults to `False`):
- Whether to use non-blocking CUDA calls to help minimize synchronization during
- distributed training with prepared `DataLoader` inputs being moved to device.
- Best if used with `pin_memory=True` in the `TrainingArguments`.
- use_configured_state (`bool*, *optional*, defaults to `False`):
- Whether or not to use a pre-configured `AcceleratorState` or `PartialState` defined
- before calling `TrainingArguments`. If `True`, an `Accelerator` or `PartialState`
- must be initialized. May lead to issues using sweeps or hyperparameter tuning.
- """
- # Data related arguments
- split_batches: bool = field(
- default=False,
- metadata={
- "help": "Whether or not the accelerator should split the batches yielded by the dataloaders across the devices. If"
- " `True` the actual batch size used will be the same on any kind of distributed processes, but it must be a"
- " round multiple of the `num_processes` you are using. If `False`, actual batch size used will be the one set"
- " in your script multiplied by the number of processes."
- },
- )
- dispatch_batches: bool = field(
- default=None,
- metadata={
- "help": "If set to `True`, the dataloader prepared by the Accelerator is only iterated through on the main process"
- " and then the batches are split and broadcast to each process. Will default to `True` for `DataLoader` whose"
- " underlying dataset is an `IterableDataslet`, `False` otherwise."
- },
- )
- even_batches: bool = field(
- default=True,
- metadata={
- "help": "If set to `True`, in cases where the total batch size across all processes does not exactly divide the"
- " dataset, samples at the start of the dataset will be duplicated so the batch can be divided equally among"
- " all workers."
- },
- )
- use_seedable_sampler: bool = field(
- default=True,
- metadata={
- "help": "Whether or not use a fully seedable random sampler ([`accelerate.data_loader.SeedableRandomSampler`])."
- "Ensures training results are fully reproducable using a different sampling technique. "
- "While seed-to-seed results may differ, on average the differences are neglible when using"
- "multiple different seeds to compare. Should also be ran with [`~utils.set_seed`] for the best results."
- },
- )
- non_blocking: Optional[bool] = field(
- default=False,
- metadata={
- "help": "Whether to use non-blocking CUDA calls to help minimize synchronization during "
- "distributed training with prepared `DataLoader` inputs being moved to device. "
- "Best if used with `pin_memory=True` in the `TrainingArguments`. Requires accelerate "
- "v0.30.0."
- },
- )
- gradient_accumulation_kwargs: Optional[Dict] = field(
- default=None,
- metadata={
- "help": "Additional kwargs to configure gradient accumulation, see [`accelerate.utils.GradientAccumulationPlugin`]. "
- "Any of the following (optional) keys are acceptable: "
- " num_steps (`int`): Will take precedence over [`~.TrainingArguments.gradient_accumulation_steps`] if "
- " the latter is set to 1, otherwise an exception will be raised. "
- " adjust_scheduler (`bool`): Whether to adjust the scheduler steps to account for [`~.TrainingArguments.gradient_accumulation_steps`]. "
- " The [`accelerate.utils.GradientAccumulationPlugin`] default is `True`. "
- " sync_each_batch (`bool`): Whether to synchronize the gradients at each data batch. "
- " The [`accelerate.utils.GradientAccumulationPlugin`] default is `False`."
- },
- )
- use_configured_state: bool = field(
- default=False,
- metadata={
- "help": "Whether or not to use a pre-configured `AcceleratorState` or `PartialState` defined before calling `TrainingArguments`."
- "If `True`, an `Accelerator` or `PartialState` must be initialized. May lead to issues using sweeps or hyperparameter tuning."
- },
- )
- @classmethod
- def from_json_file(cls, json_file):
- # Check if exists
- open_file = io.open if os.path.exists(json_file) else open
- with open_file(json_file, "r", encoding="utf-8") as f:
- config_dict = json.load(f)
- # Check for keys and load sensible defaults
- extra_keys = sorted(key for key in config_dict.keys() if key not in cls.__dataclass_fields__.keys())
- if len(extra_keys) > 0:
- raise ValueError(
- f"The config file at {json_file} had unknown keys ({extra_keys}), please try upgrading your `transformers`"
- " version or fix (and potentially remove these keys) from your config file."
- )
- return cls(**config_dict)
- def to_dict(self):
- return copy.deepcopy(self.__dict__)
- def pop(self, key, default=None):
- return self.__dict__.pop(key, default)
- class LayerWiseDummyOptimizer(torch.optim.Optimizer):
- """
- For Layer-wise optimizers such as GaLoRE optimizer, the optimization
- step is already done through the post gradient hooks. Therefore
- the trick is to create a dummy optimizer that can take arbitrary
- args and kwargs and return a no-op during training.
- Initial idea from @hiyouga in LLaMA-Factory:
- https://github.com/hiyouga/LLaMA-Factory/commit/8664262cde3919e10eaecbd66e8c5d356856362e#diff-ebe08ab14496dfb9e06075f0fdd36799ef6d1535cc4dd4715b74c4e3e06fe3ba
- """
- def __init__(self, optimizer_dict=None, *args, **kwargs):
- dummy_tensor = torch.randn(1, 1)
- self.optimizer_dict = optimizer_dict
- super().__init__([dummy_tensor], {"lr": kwargs.get("lr", 1e-03)})
- def zero_grad(self, set_to_none: bool = True) -> None:
- pass
- def step(self, closure=None) -> Optional[float]:
- pass
- class LayerWiseDummyScheduler(LRScheduler):
- """
- For Layer-wise optimizers such as GaLoRE optimizer, the optimization and scheduling step
- are already done through the post gradient hooks. Therefore
- the trick is to create a dummy scheduler that can take arbitrary
- args and kwargs and return a no-op during training.
- """
- def __init__(self, *args, **kwargs):
- self.default_lr = kwargs["lr"]
- optimizer = LayerWiseDummyOptimizer(**kwargs)
- last_epoch = -1
- verbose = False
- super().__init__(optimizer, last_epoch, verbose)
- def get_lr(self):
- # default value
- lrs = [self.default_lr]
- # we take each lr in the parameters if they exist, assumes the optimizer to be the `LayerWiseDummyOptimizer`
- if self.optimizer is not None:
- param_wise_lrs = [
- [group["lr"] for group in optim.param_groups] for optim in self.optimizer.optimizer_dict.values()
- ]
- lrs = list(chain(*param_wise_lrs))
- return lrs
- def _get_closed_form_lr(self):
- return self.base_lrs
|