| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190 |
- # Copyright 2022 The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- Doc utilities: Utilities related to documentation
- """
- import functools
- import re
- import types
- def add_start_docstrings(*docstr):
- def docstring_decorator(fn):
- fn.__doc__ = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "")
- return fn
- return docstring_decorator
- def add_start_docstrings_to_model_forward(*docstr):
- def docstring_decorator(fn):
- docstring = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "")
- class_name = f"[`{fn.__qualname__.split('.')[0]}`]"
- intro = f" The {class_name} forward method, overrides the `__call__` special method."
- note = r"""
- <Tip>
- Although the recipe for forward pass needs to be defined within this function, one should call the [`Module`]
- instance afterwards instead of this since the former takes care of running the pre and post processing steps while
- the latter silently ignores them.
- </Tip>
- """
- fn.__doc__ = intro + note + docstring
- return fn
- return docstring_decorator
- def add_end_docstrings(*docstr):
- def docstring_decorator(fn):
- fn.__doc__ = (fn.__doc__ if fn.__doc__ is not None else "") + "".join(docstr)
- return fn
- return docstring_decorator
- PT_RETURN_INTRODUCTION = r"""
- Returns:
- [`{full_output_type}`] or `tuple(torch.FloatTensor)`: A [`{full_output_type}`] or a tuple of
- `torch.FloatTensor` (if `return_dict=False` is passed or when `config.return_dict=False`) comprising various
- elements depending on the configuration ([`{config_class}`]) and inputs.
- """
- TF_RETURN_INTRODUCTION = r"""
- Returns:
- [`{full_output_type}`] or `tuple(tf.Tensor)`: A [`{full_output_type}`] or a tuple of `tf.Tensor` (if
- `return_dict=False` is passed or when `config.return_dict=False`) comprising various elements depending on the
- configuration ([`{config_class}`]) and inputs.
- """
- def _get_indent(t):
- """Returns the indentation in the first line of t"""
- search = re.search(r"^(\s*)\S", t)
- return "" if search is None else search.groups()[0]
- def _convert_output_args_doc(output_args_doc):
- """Convert output_args_doc to display properly."""
- # Split output_arg_doc in blocks argument/description
- indent = _get_indent(output_args_doc)
- blocks = []
- current_block = ""
- for line in output_args_doc.split("\n"):
- # If the indent is the same as the beginning, the line is the name of new arg.
- if _get_indent(line) == indent:
- if len(current_block) > 0:
- blocks.append(current_block[:-1])
- current_block = f"{line}\n"
- else:
- # Otherwise it's part of the description of the current arg.
- # We need to remove 2 spaces to the indentation.
- current_block += f"{line[2:]}\n"
- blocks.append(current_block[:-1])
- # Format each block for proper rendering
- for i in range(len(blocks)):
- blocks[i] = re.sub(r"^(\s+)(\S+)(\s+)", r"\1- **\2**\3", blocks[i])
- blocks[i] = re.sub(r":\s*\n\s*(\S)", r" -- \1", blocks[i])
- return "\n".join(blocks)
- def _prepare_output_docstrings(output_type, config_class, min_indent=None):
- """
- Prepares the return part of the docstring using `output_type`.
- """
- output_docstring = output_type.__doc__
- # Remove the head of the docstring to keep the list of args only
- lines = output_docstring.split("\n")
- i = 0
- while i < len(lines) and re.search(r"^\s*(Args|Parameters):\s*$", lines[i]) is None:
- i += 1
- if i < len(lines):
- params_docstring = "\n".join(lines[(i + 1) :])
- params_docstring = _convert_output_args_doc(params_docstring)
- else:
- raise ValueError(
- f"No `Args` or `Parameters` section is found in the docstring of `{output_type.__name__}`. Make sure it has "
- "docstring and contain either `Args` or `Parameters`."
- )
- # Add the return introduction
- full_output_type = f"{output_type.__module__}.{output_type.__name__}"
- intro = TF_RETURN_INTRODUCTION if output_type.__name__.startswith("TF") else PT_RETURN_INTRODUCTION
- intro = intro.format(full_output_type=full_output_type, config_class=config_class)
- result = intro + params_docstring
- # Apply minimum indent if necessary
- if min_indent is not None:
- lines = result.split("\n")
- # Find the indent of the first nonempty line
- i = 0
- while len(lines[i]) == 0:
- i += 1
- indent = len(_get_indent(lines[i]))
- # If too small, add indentation to all nonempty lines
- if indent < min_indent:
- to_add = " " * (min_indent - indent)
- lines = [(f"{to_add}{line}" if len(line) > 0 else line) for line in lines]
- result = "\n".join(lines)
- return result
- FAKE_MODEL_DISCLAIMER = """
- <Tip warning={true}>
- This example uses a random model as the real ones are all very big. To get proper results, you should use
- {real_checkpoint} instead of {fake_checkpoint}. If you get out-of-memory when loading that checkpoint, you can try
- adding `device_map="auto"` in the `from_pretrained` call.
- </Tip>
- """
- PT_TOKEN_CLASSIFICATION_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoTokenizer, {model_class}
- >>> import torch
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> inputs = tokenizer(
- ... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
- ... )
- >>> with torch.no_grad():
- ... logits = model(**inputs).logits
- >>> predicted_token_class_ids = logits.argmax(-1)
- >>> # Note that tokens are classified rather then input words which means that
- >>> # there might be more predicted token classes than words.
- >>> # Multiple token classes might account for the same word
- >>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
- >>> predicted_tokens_classes
- {expected_output}
- >>> labels = predicted_token_class_ids
- >>> loss = model(**inputs, labels=labels).loss
- >>> round(loss.item(), 2)
- {expected_loss}
- ```
- """
- PT_QUESTION_ANSWERING_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoTokenizer, {model_class}
- >>> import torch
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
- >>> inputs = tokenizer(question, text, return_tensors="pt")
- >>> with torch.no_grad():
- ... outputs = model(**inputs)
- >>> answer_start_index = outputs.start_logits.argmax()
- >>> answer_end_index = outputs.end_logits.argmax()
- >>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
- >>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
- {expected_output}
- >>> # target is "nice puppet"
- >>> target_start_index = torch.tensor([{qa_target_start_index}])
- >>> target_end_index = torch.tensor([{qa_target_end_index}])
- >>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
- >>> loss = outputs.loss
- >>> round(loss.item(), 2)
- {expected_loss}
- ```
- """
- PT_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
- Example of single-label classification:
- ```python
- >>> import torch
- >>> from transformers import AutoTokenizer, {model_class}
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
- >>> with torch.no_grad():
- ... logits = model(**inputs).logits
- >>> predicted_class_id = logits.argmax().item()
- >>> model.config.id2label[predicted_class_id]
- {expected_output}
- >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
- >>> num_labels = len(model.config.id2label)
- >>> model = {model_class}.from_pretrained("{checkpoint}", num_labels=num_labels)
- >>> labels = torch.tensor([1])
- >>> loss = model(**inputs, labels=labels).loss
- >>> round(loss.item(), 2)
- {expected_loss}
- ```
- Example of multi-label classification:
- ```python
- >>> import torch
- >>> from transformers import AutoTokenizer, {model_class}
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}", problem_type="multi_label_classification")
- >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
- >>> with torch.no_grad():
- ... logits = model(**inputs).logits
- >>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
- >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
- >>> num_labels = len(model.config.id2label)
- >>> model = {model_class}.from_pretrained(
- ... "{checkpoint}", num_labels=num_labels, problem_type="multi_label_classification"
- ... )
- >>> labels = torch.sum(
- ... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
- ... ).to(torch.float)
- >>> loss = model(**inputs, labels=labels).loss
- ```
- """
- PT_MASKED_LM_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoTokenizer, {model_class}
- >>> import torch
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="pt")
- >>> with torch.no_grad():
- ... logits = model(**inputs).logits
- >>> # retrieve index of {mask}
- >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
- >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
- >>> tokenizer.decode(predicted_token_id)
- {expected_output}
- >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
- >>> # mask labels of non-{mask} tokens
- >>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
- >>> outputs = model(**inputs, labels=labels)
- >>> round(outputs.loss.item(), 2)
- {expected_loss}
- ```
- """
- PT_BASE_MODEL_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoTokenizer, {model_class}
- >>> import torch
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
- >>> outputs = model(**inputs)
- >>> last_hidden_states = outputs.last_hidden_state
- ```
- """
- PT_MULTIPLE_CHOICE_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoTokenizer, {model_class}
- >>> import torch
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
- >>> choice0 = "It is eaten with a fork and a knife."
- >>> choice1 = "It is eaten while held in the hand."
- >>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
- >>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
- >>> outputs = model(**{{k: v.unsqueeze(0) for k, v in encoding.items()}}, labels=labels) # batch size is 1
- >>> # the linear classifier still needs to be trained
- >>> loss = outputs.loss
- >>> logits = outputs.logits
- ```
- """
- PT_CAUSAL_LM_SAMPLE = r"""
- Example:
- ```python
- >>> import torch
- >>> from transformers import AutoTokenizer, {model_class}
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
- >>> outputs = model(**inputs, labels=inputs["input_ids"])
- >>> loss = outputs.loss
- >>> logits = outputs.logits
- ```
- """
- PT_SPEECH_BASE_MODEL_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoProcessor, {model_class}
- >>> import torch
- >>> from datasets import load_dataset
- >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation", trust_remote_code=True)
- >>> dataset = dataset.sort("id")
- >>> sampling_rate = dataset.features["audio"].sampling_rate
- >>> processor = AutoProcessor.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> # audio file is decoded on the fly
- >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
- >>> with torch.no_grad():
- ... outputs = model(**inputs)
- >>> last_hidden_states = outputs.last_hidden_state
- >>> list(last_hidden_states.shape)
- {expected_output}
- ```
- """
- PT_SPEECH_CTC_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoProcessor, {model_class}
- >>> from datasets import load_dataset
- >>> import torch
- >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation", trust_remote_code=True)
- >>> dataset = dataset.sort("id")
- >>> sampling_rate = dataset.features["audio"].sampling_rate
- >>> processor = AutoProcessor.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> # audio file is decoded on the fly
- >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
- >>> with torch.no_grad():
- ... logits = model(**inputs).logits
- >>> predicted_ids = torch.argmax(logits, dim=-1)
- >>> # transcribe speech
- >>> transcription = processor.batch_decode(predicted_ids)
- >>> transcription[0]
- {expected_output}
- >>> inputs["labels"] = processor(text=dataset[0]["text"], return_tensors="pt").input_ids
- >>> # compute loss
- >>> loss = model(**inputs).loss
- >>> round(loss.item(), 2)
- {expected_loss}
- ```
- """
- PT_SPEECH_SEQ_CLASS_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoFeatureExtractor, {model_class}
- >>> from datasets import load_dataset
- >>> import torch
- >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation", trust_remote_code=True)
- >>> dataset = dataset.sort("id")
- >>> sampling_rate = dataset.features["audio"].sampling_rate
- >>> feature_extractor = AutoFeatureExtractor.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> # audio file is decoded on the fly
- >>> inputs = feature_extractor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
- >>> with torch.no_grad():
- ... logits = model(**inputs).logits
- >>> predicted_class_ids = torch.argmax(logits, dim=-1).item()
- >>> predicted_label = model.config.id2label[predicted_class_ids]
- >>> predicted_label
- {expected_output}
- >>> # compute loss - target_label is e.g. "down"
- >>> target_label = model.config.id2label[0]
- >>> inputs["labels"] = torch.tensor([model.config.label2id[target_label]])
- >>> loss = model(**inputs).loss
- >>> round(loss.item(), 2)
- {expected_loss}
- ```
- """
- PT_SPEECH_FRAME_CLASS_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoFeatureExtractor, {model_class}
- >>> from datasets import load_dataset
- >>> import torch
- >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation", trust_remote_code=True)
- >>> dataset = dataset.sort("id")
- >>> sampling_rate = dataset.features["audio"].sampling_rate
- >>> feature_extractor = AutoFeatureExtractor.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> # audio file is decoded on the fly
- >>> inputs = feature_extractor(dataset[0]["audio"]["array"], return_tensors="pt", sampling_rate=sampling_rate)
- >>> with torch.no_grad():
- ... logits = model(**inputs).logits
- >>> probabilities = torch.sigmoid(logits[0])
- >>> # labels is a one-hot array of shape (num_frames, num_speakers)
- >>> labels = (probabilities > 0.5).long()
- >>> labels[0].tolist()
- {expected_output}
- ```
- """
- PT_SPEECH_XVECTOR_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoFeatureExtractor, {model_class}
- >>> from datasets import load_dataset
- >>> import torch
- >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation", trust_remote_code=True)
- >>> dataset = dataset.sort("id")
- >>> sampling_rate = dataset.features["audio"].sampling_rate
- >>> feature_extractor = AutoFeatureExtractor.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> # audio file is decoded on the fly
- >>> inputs = feature_extractor(
- ... [d["array"] for d in dataset[:2]["audio"]], sampling_rate=sampling_rate, return_tensors="pt", padding=True
- ... )
- >>> with torch.no_grad():
- ... embeddings = model(**inputs).embeddings
- >>> embeddings = torch.nn.functional.normalize(embeddings, dim=-1).cpu()
- >>> # the resulting embeddings can be used for cosine similarity-based retrieval
- >>> cosine_sim = torch.nn.CosineSimilarity(dim=-1)
- >>> similarity = cosine_sim(embeddings[0], embeddings[1])
- >>> threshold = 0.7 # the optimal threshold is dataset-dependent
- >>> if similarity < threshold:
- ... print("Speakers are not the same!")
- >>> round(similarity.item(), 2)
- {expected_output}
- ```
- """
- PT_VISION_BASE_MODEL_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoImageProcessor, {model_class}
- >>> import torch
- >>> from datasets import load_dataset
- >>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
- >>> image = dataset["test"]["image"][0]
- >>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> inputs = image_processor(image, return_tensors="pt")
- >>> with torch.no_grad():
- ... outputs = model(**inputs)
- >>> last_hidden_states = outputs.last_hidden_state
- >>> list(last_hidden_states.shape)
- {expected_output}
- ```
- """
- PT_VISION_SEQ_CLASS_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoImageProcessor, {model_class}
- >>> import torch
- >>> from datasets import load_dataset
- >>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
- >>> image = dataset["test"]["image"][0]
- >>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> inputs = image_processor(image, return_tensors="pt")
- >>> with torch.no_grad():
- ... logits = model(**inputs).logits
- >>> # model predicts one of the 1000 ImageNet classes
- >>> predicted_label = logits.argmax(-1).item()
- >>> print(model.config.id2label[predicted_label])
- {expected_output}
- ```
- """
- PT_SAMPLE_DOCSTRINGS = {
- "SequenceClassification": PT_SEQUENCE_CLASSIFICATION_SAMPLE,
- "QuestionAnswering": PT_QUESTION_ANSWERING_SAMPLE,
- "TokenClassification": PT_TOKEN_CLASSIFICATION_SAMPLE,
- "MultipleChoice": PT_MULTIPLE_CHOICE_SAMPLE,
- "MaskedLM": PT_MASKED_LM_SAMPLE,
- "LMHead": PT_CAUSAL_LM_SAMPLE,
- "BaseModel": PT_BASE_MODEL_SAMPLE,
- "SpeechBaseModel": PT_SPEECH_BASE_MODEL_SAMPLE,
- "CTC": PT_SPEECH_CTC_SAMPLE,
- "AudioClassification": PT_SPEECH_SEQ_CLASS_SAMPLE,
- "AudioFrameClassification": PT_SPEECH_FRAME_CLASS_SAMPLE,
- "AudioXVector": PT_SPEECH_XVECTOR_SAMPLE,
- "VisionBaseModel": PT_VISION_BASE_MODEL_SAMPLE,
- "ImageClassification": PT_VISION_SEQ_CLASS_SAMPLE,
- }
- TF_TOKEN_CLASSIFICATION_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoTokenizer, {model_class}
- >>> import tensorflow as tf
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> inputs = tokenizer(
- ... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
- ... )
- >>> logits = model(**inputs).logits
- >>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)
- >>> # Note that tokens are classified rather then input words which means that
- >>> # there might be more predicted token classes than words.
- >>> # Multiple token classes might account for the same word
- >>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
- >>> predicted_tokens_classes
- {expected_output}
- ```
- ```python
- >>> labels = predicted_token_class_ids
- >>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss)
- >>> round(float(loss), 2)
- {expected_loss}
- ```
- """
- TF_QUESTION_ANSWERING_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoTokenizer, {model_class}
- >>> import tensorflow as tf
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
- >>> inputs = tokenizer(question, text, return_tensors="tf")
- >>> outputs = model(**inputs)
- >>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
- >>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])
- >>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
- >>> tokenizer.decode(predict_answer_tokens)
- {expected_output}
- ```
- ```python
- >>> # target is "nice puppet"
- >>> target_start_index = tf.constant([{qa_target_start_index}])
- >>> target_end_index = tf.constant([{qa_target_end_index}])
- >>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
- >>> loss = tf.math.reduce_mean(outputs.loss)
- >>> round(float(loss), 2)
- {expected_loss}
- ```
- """
- TF_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoTokenizer, {model_class}
- >>> import tensorflow as tf
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
- >>> logits = model(**inputs).logits
- >>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
- >>> model.config.id2label[predicted_class_id]
- {expected_output}
- ```
- ```python
- >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
- >>> num_labels = len(model.config.id2label)
- >>> model = {model_class}.from_pretrained("{checkpoint}", num_labels=num_labels)
- >>> labels = tf.constant(1)
- >>> loss = model(**inputs, labels=labels).loss
- >>> round(float(loss), 2)
- {expected_loss}
- ```
- """
- TF_MASKED_LM_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoTokenizer, {model_class}
- >>> import tensorflow as tf
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="tf")
- >>> logits = model(**inputs).logits
- >>> # retrieve index of {mask}
- >>> mask_token_index = tf.where((inputs.input_ids == tokenizer.mask_token_id)[0])
- >>> selected_logits = tf.gather_nd(logits[0], indices=mask_token_index)
- >>> predicted_token_id = tf.math.argmax(selected_logits, axis=-1)
- >>> tokenizer.decode(predicted_token_id)
- {expected_output}
- ```
- ```python
- >>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
- >>> # mask labels of non-{mask} tokens
- >>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
- >>> outputs = model(**inputs, labels=labels)
- >>> round(float(outputs.loss), 2)
- {expected_loss}
- ```
- """
- TF_BASE_MODEL_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoTokenizer, {model_class}
- >>> import tensorflow as tf
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
- >>> outputs = model(inputs)
- >>> last_hidden_states = outputs.last_hidden_state
- ```
- """
- TF_MULTIPLE_CHOICE_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoTokenizer, {model_class}
- >>> import tensorflow as tf
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
- >>> choice0 = "It is eaten with a fork and a knife."
- >>> choice1 = "It is eaten while held in the hand."
- >>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
- >>> inputs = {{k: tf.expand_dims(v, 0) for k, v in encoding.items()}}
- >>> outputs = model(inputs) # batch size is 1
- >>> # the linear classifier still needs to be trained
- >>> logits = outputs.logits
- ```
- """
- TF_CAUSAL_LM_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoTokenizer, {model_class}
- >>> import tensorflow as tf
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
- >>> outputs = model(inputs)
- >>> logits = outputs.logits
- ```
- """
- TF_SPEECH_BASE_MODEL_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoProcessor, {model_class}
- >>> from datasets import load_dataset
- >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation", trust_remote_code=True)
- >>> dataset = dataset.sort("id")
- >>> sampling_rate = dataset.features["audio"].sampling_rate
- >>> processor = AutoProcessor.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> # audio file is decoded on the fly
- >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="tf")
- >>> outputs = model(**inputs)
- >>> last_hidden_states = outputs.last_hidden_state
- >>> list(last_hidden_states.shape)
- {expected_output}
- ```
- """
- TF_SPEECH_CTC_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoProcessor, {model_class}
- >>> from datasets import load_dataset
- >>> import tensorflow as tf
- >>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation", trust_remote_code=True)
- >>> dataset = dataset.sort("id")
- >>> sampling_rate = dataset.features["audio"].sampling_rate
- >>> processor = AutoProcessor.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> # audio file is decoded on the fly
- >>> inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="tf")
- >>> logits = model(**inputs).logits
- >>> predicted_ids = tf.math.argmax(logits, axis=-1)
- >>> # transcribe speech
- >>> transcription = processor.batch_decode(predicted_ids)
- >>> transcription[0]
- {expected_output}
- ```
- ```python
- >>> inputs["labels"] = processor(text=dataset[0]["text"], return_tensors="tf").input_ids
- >>> # compute loss
- >>> loss = model(**inputs).loss
- >>> round(float(loss), 2)
- {expected_loss}
- ```
- """
- TF_VISION_BASE_MODEL_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoImageProcessor, {model_class}
- >>> from datasets import load_dataset
- >>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
- >>> image = dataset["test"]["image"][0]
- >>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> inputs = image_processor(image, return_tensors="tf")
- >>> outputs = model(**inputs)
- >>> last_hidden_states = outputs.last_hidden_state
- >>> list(last_hidden_states.shape)
- {expected_output}
- ```
- """
- TF_VISION_SEQ_CLASS_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoImageProcessor, {model_class}
- >>> import tensorflow as tf
- >>> from datasets import load_dataset
- >>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
- >>> image = dataset["test"]["image"][0]
- >>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> inputs = image_processor(image, return_tensors="tf")
- >>> logits = model(**inputs).logits
- >>> # model predicts one of the 1000 ImageNet classes
- >>> predicted_label = int(tf.math.argmax(logits, axis=-1))
- >>> print(model.config.id2label[predicted_label])
- {expected_output}
- ```
- """
- TF_SAMPLE_DOCSTRINGS = {
- "SequenceClassification": TF_SEQUENCE_CLASSIFICATION_SAMPLE,
- "QuestionAnswering": TF_QUESTION_ANSWERING_SAMPLE,
- "TokenClassification": TF_TOKEN_CLASSIFICATION_SAMPLE,
- "MultipleChoice": TF_MULTIPLE_CHOICE_SAMPLE,
- "MaskedLM": TF_MASKED_LM_SAMPLE,
- "LMHead": TF_CAUSAL_LM_SAMPLE,
- "BaseModel": TF_BASE_MODEL_SAMPLE,
- "SpeechBaseModel": TF_SPEECH_BASE_MODEL_SAMPLE,
- "CTC": TF_SPEECH_CTC_SAMPLE,
- "VisionBaseModel": TF_VISION_BASE_MODEL_SAMPLE,
- "ImageClassification": TF_VISION_SEQ_CLASS_SAMPLE,
- }
- FLAX_TOKEN_CLASSIFICATION_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoTokenizer, {model_class}
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
- >>> outputs = model(**inputs)
- >>> logits = outputs.logits
- ```
- """
- FLAX_QUESTION_ANSWERING_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoTokenizer, {model_class}
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
- >>> inputs = tokenizer(question, text, return_tensors="jax")
- >>> outputs = model(**inputs)
- >>> start_scores = outputs.start_logits
- >>> end_scores = outputs.end_logits
- ```
- """
- FLAX_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoTokenizer, {model_class}
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
- >>> outputs = model(**inputs)
- >>> logits = outputs.logits
- ```
- """
- FLAX_MASKED_LM_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoTokenizer, {model_class}
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="jax")
- >>> outputs = model(**inputs)
- >>> logits = outputs.logits
- ```
- """
- FLAX_BASE_MODEL_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoTokenizer, {model_class}
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
- >>> outputs = model(**inputs)
- >>> last_hidden_states = outputs.last_hidden_state
- ```
- """
- FLAX_MULTIPLE_CHOICE_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoTokenizer, {model_class}
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
- >>> choice0 = "It is eaten with a fork and a knife."
- >>> choice1 = "It is eaten while held in the hand."
- >>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
- >>> outputs = model(**{{k: v[None, :] for k, v in encoding.items()}})
- >>> logits = outputs.logits
- ```
- """
- FLAX_CAUSAL_LM_SAMPLE = r"""
- Example:
- ```python
- >>> from transformers import AutoTokenizer, {model_class}
- >>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
- >>> model = {model_class}.from_pretrained("{checkpoint}")
- >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
- >>> outputs = model(**inputs)
- >>> # retrieve logts for next token
- >>> next_token_logits = outputs.logits[:, -1]
- ```
- """
- FLAX_SAMPLE_DOCSTRINGS = {
- "SequenceClassification": FLAX_SEQUENCE_CLASSIFICATION_SAMPLE,
- "QuestionAnswering": FLAX_QUESTION_ANSWERING_SAMPLE,
- "TokenClassification": FLAX_TOKEN_CLASSIFICATION_SAMPLE,
- "MultipleChoice": FLAX_MULTIPLE_CHOICE_SAMPLE,
- "MaskedLM": FLAX_MASKED_LM_SAMPLE,
- "BaseModel": FLAX_BASE_MODEL_SAMPLE,
- "LMHead": FLAX_CAUSAL_LM_SAMPLE,
- }
- def filter_outputs_from_example(docstring, **kwargs):
- """
- Removes the lines testing an output with the doctest syntax in a code sample when it's set to `None`.
- """
- for key, value in kwargs.items():
- if value is not None:
- continue
- doc_key = "{" + key + "}"
- docstring = re.sub(rf"\n([^\n]+)\n\s+{doc_key}\n", "\n", docstring)
- return docstring
- def add_code_sample_docstrings(
- *docstr,
- processor_class=None,
- checkpoint=None,
- output_type=None,
- config_class=None,
- mask="[MASK]",
- qa_target_start_index=14,
- qa_target_end_index=15,
- model_cls=None,
- modality=None,
- expected_output=None,
- expected_loss=None,
- real_checkpoint=None,
- revision=None,
- ):
- def docstring_decorator(fn):
- # model_class defaults to function's class if not specified otherwise
- model_class = fn.__qualname__.split(".")[0] if model_cls is None else model_cls
- if model_class[:2] == "TF":
- sample_docstrings = TF_SAMPLE_DOCSTRINGS
- elif model_class[:4] == "Flax":
- sample_docstrings = FLAX_SAMPLE_DOCSTRINGS
- else:
- sample_docstrings = PT_SAMPLE_DOCSTRINGS
- # putting all kwargs for docstrings in a dict to be used
- # with the `.format(**doc_kwargs)`. Note that string might
- # be formatted with non-existing keys, which is fine.
- doc_kwargs = {
- "model_class": model_class,
- "processor_class": processor_class,
- "checkpoint": checkpoint,
- "mask": mask,
- "qa_target_start_index": qa_target_start_index,
- "qa_target_end_index": qa_target_end_index,
- "expected_output": expected_output,
- "expected_loss": expected_loss,
- "real_checkpoint": real_checkpoint,
- "fake_checkpoint": checkpoint,
- "true": "{true}", # For <Tip warning={true}> syntax that conflicts with formatting.
- }
- if ("SequenceClassification" in model_class or "AudioClassification" in model_class) and modality == "audio":
- code_sample = sample_docstrings["AudioClassification"]
- elif "SequenceClassification" in model_class:
- code_sample = sample_docstrings["SequenceClassification"]
- elif "QuestionAnswering" in model_class:
- code_sample = sample_docstrings["QuestionAnswering"]
- elif "TokenClassification" in model_class:
- code_sample = sample_docstrings["TokenClassification"]
- elif "MultipleChoice" in model_class:
- code_sample = sample_docstrings["MultipleChoice"]
- elif "MaskedLM" in model_class or model_class in ["FlaubertWithLMHeadModel", "XLMWithLMHeadModel"]:
- code_sample = sample_docstrings["MaskedLM"]
- elif "LMHead" in model_class or "CausalLM" in model_class:
- code_sample = sample_docstrings["LMHead"]
- elif "CTC" in model_class:
- code_sample = sample_docstrings["CTC"]
- elif "AudioFrameClassification" in model_class:
- code_sample = sample_docstrings["AudioFrameClassification"]
- elif "XVector" in model_class and modality == "audio":
- code_sample = sample_docstrings["AudioXVector"]
- elif "Model" in model_class and modality == "audio":
- code_sample = sample_docstrings["SpeechBaseModel"]
- elif "Model" in model_class and modality == "vision":
- code_sample = sample_docstrings["VisionBaseModel"]
- elif "Model" in model_class or "Encoder" in model_class:
- code_sample = sample_docstrings["BaseModel"]
- elif "ImageClassification" in model_class:
- code_sample = sample_docstrings["ImageClassification"]
- else:
- raise ValueError(f"Docstring can't be built for model {model_class}")
- code_sample = filter_outputs_from_example(
- code_sample, expected_output=expected_output, expected_loss=expected_loss
- )
- if real_checkpoint is not None:
- code_sample = FAKE_MODEL_DISCLAIMER + code_sample
- func_doc = (fn.__doc__ or "") + "".join(docstr)
- output_doc = "" if output_type is None else _prepare_output_docstrings(output_type, config_class)
- built_doc = code_sample.format(**doc_kwargs)
- if revision is not None:
- if re.match(r"^refs/pr/\\d+", revision):
- raise ValueError(
- f"The provided revision '{revision}' is incorrect. It should point to"
- " a pull request reference on the hub like 'refs/pr/6'"
- )
- built_doc = built_doc.replace(
- f'from_pretrained("{checkpoint}")', f'from_pretrained("{checkpoint}", revision="{revision}")'
- )
- fn.__doc__ = func_doc + output_doc + built_doc
- return fn
- return docstring_decorator
- def replace_return_docstrings(output_type=None, config_class=None):
- def docstring_decorator(fn):
- func_doc = fn.__doc__
- lines = func_doc.split("\n")
- i = 0
- while i < len(lines) and re.search(r"^\s*Returns?:\s*$", lines[i]) is None:
- i += 1
- if i < len(lines):
- indent = len(_get_indent(lines[i]))
- lines[i] = _prepare_output_docstrings(output_type, config_class, min_indent=indent)
- func_doc = "\n".join(lines)
- else:
- raise ValueError(
- f"The function {fn} should have an empty 'Return:' or 'Returns:' in its docstring as placeholder, "
- f"current docstring is:\n{func_doc}"
- )
- fn.__doc__ = func_doc
- return fn
- return docstring_decorator
- def copy_func(f):
- """Returns a copy of a function f."""
- # Based on http://stackoverflow.com/a/6528148/190597 (Glenn Maynard)
- g = types.FunctionType(f.__code__, f.__globals__, name=f.__name__, argdefs=f.__defaults__, closure=f.__closure__)
- g = functools.update_wrapper(g, f)
- g.__kwdefaults__ = f.__kwdefaults__
- return g
|