123456789101112131415161718192021222324252627282930313233343536373839 |
- import { __awaiter, __generator } from "tslib";
- import * as tf from '@tensorflow/tfjs-core';
- import { FaceDetection } from '../classes/FaceDetection';
- import { isTensor3D, isTensor4D } from '../utils';
- /**
- * Extracts the tensors of the image regions containing the detected faces.
- * Useful if you want to compute the face descriptors for the face images.
- * Using this method is faster then extracting a canvas for each face and
- * converting them to tensors individually.
- *
- * @param imageTensor The image tensor that face detection has been performed on.
- * @param detections The face detection results or face bounding boxes for that image.
- * @returns Tensors of the corresponding image region for each detected face.
- */
- export function extractFaceTensors(imageTensor, detections) {
- return __awaiter(this, void 0, void 0, function () {
- return __generator(this, function (_a) {
- if (!isTensor3D(imageTensor) && !isTensor4D(imageTensor)) {
- throw new Error('extractFaceTensors - expected image tensor to be 3D or 4D');
- }
- if (isTensor4D(imageTensor) && imageTensor.shape[0] > 1) {
- throw new Error('extractFaceTensors - batchSize > 1 not supported');
- }
- return [2 /*return*/, tf.tidy(function () {
- var _a = imageTensor.shape.slice(isTensor4D(imageTensor) ? 1 : 0), imgHeight = _a[0], imgWidth = _a[1], numChannels = _a[2];
- var boxes = detections.map(function (det) { return det instanceof FaceDetection
- ? det.forSize(imgWidth, imgHeight).box
- : det; })
- .map(function (box) { return box.clipAtImageBorders(imgWidth, imgHeight); });
- var faceTensors = boxes.map(function (_a) {
- var x = _a.x, y = _a.y, width = _a.width, height = _a.height;
- return tf.slice3d(imageTensor.as3D(imgHeight, imgWidth, numChannels), [y, x, 0], [height, width, numChannels]);
- });
- return faceTensors;
- })];
- });
- });
- }
- //# sourceMappingURL=extractFaceTensors.js.map
|